

Cypress Semiconductor Corporation • 3901 North First Street • San Jose, CA 95134 • 408-943-2600
 Revised October 19, 2004

Endpoint FIFO Architecture of EZ-USB FX1/FX2
Abstract
This application note describes the FIFO architecture of the
EZ-USB FX1, the full speed USB microcontroller and the
EZ-USB FX2 (and FX2LP), the high-speed USB micro-
controller. The purpose of this application note is to help the
user understand the very basics of the FX1/FX2 and get
familiar with the terminologies used while describing the data
flow in FX1/FX2. The application note addresses and
discusses the following:

• Three modes of operation of the FX1/FX2

• Endpoint Configuration and Multiple Buffering

• Three Domains that form the basic component of the FIFO
architecture

• Arming and committing endpoint buffers

• Endpoint operation in manual vs. auto mode

The application note covers the various domains of the FIFO
architecture, improving data rate using the multiple buffering
scheme, using the part in port I/O, slave FIFO or the GPIF
mode. It also provides information about the use of the
endpoint FIFOs in manual or auto mode. Furthermore, termi-
nologies like ‘arming‘ and ‘committing’ endpoint packets
when referring to an IN/OUT transfer are explained.

It is not the intention of this application note to illustrate usage
of the part in either of operational modes. The application
note does not cover details on setting up for data transfers.
After having reviewed this application note, the reader is
expected to understand the data flow for and IN and OUT
transfer and the interaction between the various domains of
the FX1/FX2 FIFO architecture that define the data paths via
IN and OUT endpoint.

In this application note we will only refer to the FX1. The same
terminologies and concept is also used in the FX2. The FX2
has identical FIFO architecture and the same number of
endpoints as the FX1.

Modes of Operation
Although some FX1-based devices may use the FX1’s CPU
to process USB data directly (Port I/O Mode), most applica-
tions use the FX1 simply as a conduit between the USB and
external data-processing logic (e.g., an ASIC or DSP, or the
IDE controller on a hard disk drive).

In devices with external data-processing logic, USB data
flows between the host and that external logic — usually
without any participation by the FX1’s CPU — through the
FX1’s internal endpoint FIFOs. To the external logic, these
endpoint FIFOs look like most others; they provide the usual
timing signals, handshake lines (full, empty, program-
mable-level), read and write strobes, output enable, etc.

These FIFO signals must, of course, be controlled by a FIFO
“master”. The FX1’s General Programmable Interface (GPIF)
can act as an internal master when the FX1 is connected to

external logic which doesn’t include a standard FIFO
interface (GPIF mode). The FIFOs can also be controlled by
an external master. When the FIFOs are controlled by an
external master, the FX1 is said to be in “Slave FIFO”. The
FX1 can be set in either one of three modes: Port I/O mode,
GPIF mode or the slave FIFO mode. The mode can be set by
setting bits 0 and 1 of the IFCONFIG register. Further infor-
mation on the IFCONFIG register setting can be found in
section 15.5.2 of the Technical Reference Manual. On
power-up the part defaults to Ports mode: the IFCONFIG
register bits 0 and 1 default to 00b.

Ports Mode

In this mode IFCONFIG[1..0] is set to 00b. The FX1 device
can be used as a data sink or a data source. The 8051 may
fill the IN endpoint with data and have the core send the
packet to the host. The 8051 may access and process the
data packet received by the core when the host issues an
OUT token. In this port mode of operation, no peripheral
device is wired to the FX1. 8051 can source data on an IN as
well as OUT endpoint. Finally in this Ports I/O mode all the
port I/O pins are available for general purpose I/O.

GPIF Mode

In this mode IFCONFIG[1..0] is set to 10b. The GPIF state
machine is the master to the FIFO’s. In GPIF mode, some of
the port pins are not available for general purpose usage as
they are dedicated to the GPIF engine. The external
peripheral is a slave to the FX1. GPIF will read/write from /to
the external peripheral which is wired to the FX1 device via
PORTB and (if 16 bit bus width) PORTD. Hence PORTB and
(if 16 bit bus width) PORTD are not available for general
purpose usage in the GPIF mode of operation. PORTB and
PORTD are dedicated to function as GPIF data bus,
FD[15..0].

Slave FIFO Mode

In this mode IFCONFIG[1..0] is set to 11b. The endpoint
FIFOs are slave to the external peripheral device wired to the
FX1. In slave FIFO mode, some of the port pins are not
available for general purpose usage as they are dedicated to
the slave FIFO control signals. The slave FIFO control signals
SLWR, SLRD, SLOE, SLCS, PKTEND, FIFOADR0 and
FIFOADR1 are inputs to the FX1 device, whereas FLAGA,
FLAGB, FLAGC, FLAGD, are outputs to the peripheral
indicating the status of the FIFO. The external peripheral
wired to the FX1 is the master and will access the FIFOs via
PORTB and (16 bit bus width) PORTD. Hence PORTB and
(if 16 bit bus width) PORTD are not available for general
purpose usage. PORTB and PORTD are dedicated to
function as FIFO data bus, FD[15..0].

The following table shows the different port pin functionality
in the three different modes. Functionality of the pins shown
in bold type in Table 1 do not change with IFCONFIG register
setting. They are shown in this table for completeness.

Endpoint FIFO Architecture of EZ-USB FX1/FX2

2

Figure 1 below shows the three modes of operation of the
FX1. This figure shows the main logic blocks of the FX1. In
general, usually a commercial application would either use
the slave FIFO mode or the GPIF mode to transfer data
between the host and the external peripheral device wired to
the FX1. In "Ports" mode, all the I/O pins are general purpose
I/O ports. The GPIF state machine and the slave FIFO logic
although existing, they are not ‘actively’ used when in Port I/O
mode. "GPIF master" mode and "Slave FIFO mode" uses the
PORTB and PORTD pins as a 16-bit data interface to the four
FX1 endpoint FIFOs EP2, EP4, EP6 and EP8. If using the
FX1 as a standalone device (no external peripheral wired to
it), it should be configured to be in ports I/O mode.

Note. EZ-USB and EZ-USB FX users redesigning the same
application with ES-USB FX1.

If an existing full speed application:

• does not have any external peripheral wired to the EZ-USB
or the EZ-USB FX, the FX1 may be set in ports I/O mode
for implementing the same application.

• has an external peripheral wired to the EZ-USB AND the
design does NOT use the fast transfer feature to move data
between the external peripheral and the endpoint FIFO,
the FX1 may be set in Ports Mode to design the same
application.

• has an external peripheral wired to the EZ-USB AND the
design uses the fast transfer feature to move data between
the external peripheral and the endpoint FIFO, the slave
FIFO mode may be used to design the same application
using EZ-USB FX1.

• uses the GPIF interface of the EZ-USB FX device, the FX1
in GPIF mode can be used to design the same application

• uses the slave FIFO interface of the EZ-USB FX device,
the slave FIFO mode may be used to design the same
application using EZ-USB FX1.

The above are suggested ways to redesign the same
EZ-USB/FX application with the FX1. There may be several
alternate ways to redesign the same EZ-USB/FX application
using the FX1

Table 1. FX1 Interface Signals

IFCONFIG[1..0] 00b
Ports Mode

IFCONFIG[1..0] 01b
GPIF Mode

IFCONFIG[1..0] 11b
Slave FIFO Mode

PD7 FD[15] FD[15]

PD6 FD[14] FD[14]

PD5 FD[13] FD[13]

PD4 FD[12] FD[12]

PD3 FD[11] FD[11]

PD2 FD[10] FD[10]

PD1 FD[9] FD[9]

PD0 FD[8] FD[8]

PB7 FD[7] FD[7]

PB6 FD[6] FD[6]

PB5 FD[5] FD[5]

PB4 FD[4] FD[4]

PB3 FD[3] FD[3]

PB2 FD[2] FD[2]

PB1 FD[1] FD[1]

PB0 FD[0] FD[0]

unused RDY0 SLRD

unused RDY1 SLWR

unused CTL0 FLAGA

unused CTL1 FLAGB

unused CTL2 FLAGC

INT#0/PA0 INT#0/PA0 INT#0/PA0

INT1#/PA1 INT1#/PA1 INT1#/PA1

PA2 PA2 SLOE

WU2/PA3 WU2/PA3 WU2/PA3

PA4 PA4 FIFOADR0

PA5 PA5 FIFOADR1

PA6 PA6 PKTEND

PA7 PA7 PA7/FLAGD

8051

USB

(SIE)

INTERFACEAUTO IN MODE

AUTO OUT MODE

PO
RT I/

O
 M

O
DE

(Slave FIFOs)

Internal
Master
(GPIF)

(CPU)

M
ANUAL

M
ODE (O

UT)

M
ANUAL M

O
DE (IN)

M
ANUAL M

ODE (OUT)

FD[15..0]

CTL [5..0]

RDY [5..0]

GPIFADDR[9..0]

GSTATE[2..0]

FD[15..0]

SLWR,SLRD,SLOE,SLCS
FIFOADDR[1..0]

PKTEND

FLAGA, FLAGB, FLAGC, FLAGD

External
Peripheral
(Slave)

External
Peripheral
(Master)

FX1
GPIF MODE

SLAVE FIFO MODE

M
ANUAL M

ODE (I
N)

HOST

Figure 1. Three Modes of Operation in FX1/FX2

Endpoint FIFO Architecture of EZ-USB FX1/FX2

3

Endpoint Configuration and Multiple Buffering
This section discusses the different endpoints available in the
FX1 and how to configure an endpoint. It also provides infor-
mation on the restrictions to be aware of while configuring and
accessing different type of endpoints. Finally the multiple
buffering scheme used to maximize throughput is briefly
discussed.

Endpoint Configuration

The FX1 can have up to a maximum of seven endpoints as
listed in Table 2 below.

EP1IN and EP1OUT have a fixed depth of 64 bytes. The
external peripheral or the GPIF state machine cannot access
these endpoints as FIFO buffers. In slave FIFO mode,
SLWR/SLRD signals cannot be used to directly access these
buffers.

Endpoints 2, 4, 6 and 8 are the large, high bandwidth (only
applicable in FX2 when operating at high speed), data moving
endpoints. They can be configured in various ways to suit
bandwidth requirements. In slave FIFO mode, these
endpoints can be accessed by the external peripheral directly
using the slave FIFO control inputs (SLWR, SLRD, SLOE,
SLCS, PKTEND). The specific FIFO being addressed is
selected by setting FIFOADR[0..1] lines. Further information
on these control signals can be found in chapter 9 of the
Technical Reference Manual.

Endpoints EP2 and EP6 are the most flexible endpoints, as
they are configurable for size (512 or 1024 bytes) and depth
of buffering (double, triple, or quad). Endpoints EP4 and EP8
are fixed at 512 bytes, double-buffered.The four large
endpoints can be configured by setting the respective
EPxCFG register (x= endpoint number). The register bits are
defined below.

EP2CFG, EP6CFG

EP4CFG, EP8CFG

Bit 7: VALID

Set VALID=1 to activate an endpoint, and VALID=0 to
de-activate it. All FX2 endpoints default to valid. An endpoint
whose VALID bit is 0 does not respond to any USB traffic.

Bit 6: DIR

Defines endpoint direction, 1=IN, 0 = OUT endpoint

Bit[5..4]: TYPE[1..0]

These bits define the endpoint type

0 0 : Invalid

0 1 : Isochronous

1 0 : Bulk (default)

1 1 : Interrupt

Bit 3: SIZE (not defined in EP4CFG and EP8CFG)

Defines endpoint FIFO buffer size, 1=1024, 0 = 512

Bit 2: Reserved. Defaults to 0

Bit[1..0]: BUF[1..0]. (not defined in EP4CFG and EP8CFG)

Defines the Buffering scheme

0 0 Quad Buffered

0 1 Invalid

1 0 Double Buffered

1 1 Triple Buffered

Since EP4 and EP8 have a fixed size of 512 and fixed
buffering (double), bits 3 (SIZE), 0 and 1 (BUF0 and BUF1)
are unused bits in the EP4CFG and EP8CFG register.

Each of these four large endpoints can only exist as multiple
(atleast double) buffered endpoints. By default each endpoint
is configured as double buffered 512 bytes deep. The shaded
boxes in Figure2 on the following page enclose the buffers to
indicate double, triple, or quad buffering. Double buffering

Table 2. Endpoints Available in FX1

Endpoint Direction Type Max Size Buffering

EP0 IN and OUT
bidirectional

Control 64 Single

EP1IN IN Bulk/ Interrupt/ Isochronous 64 Single

EP1OUT OUT Bulk/ Interrupt/ Isochronous 64 Single

EP2 IN or OUT
(configurable)

Bulk/ Interrupt/ Isochronous 512/1024
(configurable)

Double,
triple, quad

EP4 IN or OUT
(configurable)

Bulk/ Interrupt/ Isochronous 512 Double

EP6 IN or OUT
(configurable)

Bulk/ Interrupt/ Isochronous 512/1024
(configurable)

Double,
triple, quad

EP8 IN or OUT
(configurable)

Bulk/ Interrupt/ Isochronous 512 Double

VALID DIR TYPE1 TYPE0 SIZE 0 BUF1

R/W R/W R/W R/W R/W R R/W R/W
X X X X X X X X

b7 b6 b5 b4 b3 b2 b1 b0

BUF0

VALID DIR TYPE1 TYPE0 0 0 0

R/W R/W R/W R/W R R R R
X X X X X X X X

b7 b6 b5 b4 b3 b2 b1 b0

0

Endpoint FIFO Architecture of EZ-USB FX1/FX2

4

means that one packet of data can be filling or emptying with
USB data while another packet (from the same endpoint) is
being serviced by external interface logic. Triple buffering
adds a third packet buffer to the pool, which can be used by
either side (USB or interface) as needed. Quad buffering
adds a fourth packet buffer. Multiple buffering can significantly
improve USB bandwidth performance when the data
supplying and consuming rates are similar, but bursty; it
smooths out the bursts, reducing or eliminating the need for
one side to wait for the other.

In Figure 2, the buffer names and the number, ‘BufferN’
(where N= 1...4) does not have any significance as far as the
order of the buffers are concerned. They are marked simply
for enumerating the buffers. The 8051 has no knowledge as
to which buffer is being addressed. The internal logic selects
one of the available buffers and the 8051 can access only this
buffer. As explained in section 8.5 (CPU Access to FX1
Endpoint Data) “The CPU can only access the “active” buffer
of a multiple-buffered endpoint. In other words, firmware must
treat a quad-buffered 512-byte endpoint as being only 512

bytes wide, even though the quad-buffered endpoint actually
occupies 2048 bytes of RAM.”

Actual FIFO Buffer Accessible by 8051

If an endpoint is configured as a bulk endpoint, even though
physically the endpoint buffer is 512 bytes deep, the 8051 and
the external master must treat it as 64 bytes deep only. As
explained earlier, data is transferred in full speed packets
only. The endpoints FIFOs are quantum FIFOs. The physical
size of each of this quantum FIFO can be set using the SIZE
bit in the EPxCFG register. Each full speed data packet is
allocated a single quantum FIFO (size specified by the SIZE
bit in EPxCFG). The 8051 should limit its FIFO access to a
maximum depth that is defined by the smaller of the
wMaxPacketSize (reported in the endpoint descriptor) and
the size of the FIFO (set by the SIZE bit). For a bulk endpoint
this is 64 bytes.

Note. Regardless of the physical buffer size, each endpoint
buffer accommodates only one full-speed packet.

EP2

Buffer1

512 Bytes

0xF000

0xF200

0xF1FF

0xF3FF

0xF400

0xF600

0xF5FF

0xF7FF

0xF800

0xFA00

0xF9FF

0xFBFF

0xFC00

0xFE00

0xFDFF

0xFFFF

EP2

Buffer2

512 Bytes

EP4

Buffer1

512 Bytes

EP4

Buffer2

512 Bytes

EP6

Buffer1

512 Bytes

EP6

Buffer2

512 Bytes

EP8

Buffer1

512 Bytes

EP8

Buffer2

512 Bytes

EP2

Buffer1

512 Bytes

EP2

Buffer2

512 Bytes

EP2

Buffer3

512 Bytes

EP2

Buffer4

512 Bytes

EP6

Buffer1

512 Bytes

EP6

Buffer2

512 Bytes

EP6

Buffer3

512 Bytes

EP6

Buffer4

512 Bytes

EP2

Buffer1

512 Bytes

EP2

Buffer2

512 Bytes

EP2

Buffer3

512 Bytes

EP6

Buffer1

512 Bytes

EP6

Buffer2

512 Bytes

EP6

Buffer3

512 Bytes

EP8

Buffer1

512 Bytes

EP8

Buffer2

512 Bytes

EP8

Buffer1

512 Bytes

EP8

Buffer2

512 Bytes

EP2

Buffer1

1024 Bytes

EP2

Buffer2

1024 Bytes

EP6

Buffer1

1024 Bytes

EP6

Buffer2

1024 Bytes

EP2

Buffer1

1024 Bytes

EP2

Buffer2

1024 Bytes

EP2

Buffer1

1024 Bytes

EP2

Buffer2

1024 Bytes

EP2

Buffer1

1024 Bytes

EP2

Buffer2

1024 Bytes

EP2

Buffer3

1024 Bytes

A
EP2: 512x2
EP4: 512x2

B
EP2: 512x4
EP4: NA

C
EP2: 1024x2
EP4: NA

A’
EP6: 512x2
EP8: 512x2

B’
EP6 512x4
EP8: NA

C’
EP6: 1024x2
EP8: NA

D
EP2: 512x3

EP8: 512x2

E F

EP6: 512x3
EP4: NA

EP2: 1024x3

EP8: 512x2
EP6: NA
EP4: NA

EP2: 1024x4

EP8: NA
EP6: NA
EP4: NA

Figure 2. FX1/FX2 Endpoint Buffers

Endpoint FIFO Architecture of EZ-USB FX1/FX2

5

For example, if EP2 is used as a full-speed BULK endpoint,
the maximum number of bytes (MaxPacketSize) it can
accommodate is 64, even though the physical buffer size is
512 or 1024 bytes. (as set by the SIZE bit). It makes sense,
therefore, to configure full-speed BULK endpoints as 512
bytes rather than 1024, so that fewer unused bytes are
wasted. For a quad buffered 512 bytes endpoint, only 64
bytes of each 512 bytes FIFO buffer is used for data.

An ISOCHRONOUS full speed endpoint, on the other hand,
could fully use either a 512- or 1024-byte buffer. If the
wMaxPacketSize is set to greater than 512 bytes, it makes
sense to configure the endpoint as 1024 bytes deep. If the

wMaxPacketSize is set to less than 512 bytes, it is more
efficient to configure the endpoint as 512 bytes only, there by
leaving less unused buffer space.

Table 3 lists all the possible endpoint configurations. Refer to
Figure 2 for the endpoint configuration names. Section 1.18
and chapter 8 of the Technical Reference Manual provides
further details on the possible grouping and configuration of
the endpoint buffers, which is also illustrated in Figure 2

In each of the endpoint configuration shown below, the 8051
or the external master must avoid accessing an endpoint that
is not available..

Table 3. Possible FX1 Endpoints Configuration

Endpoint Configuration
(Refer to Figure 1)

Number of Endpoints
Available Available Endpoint

Size
(Bytes)

Buffering
(x2, x3, x4)

AA’ 4 EP2 512 x2

EP4 512 x2

EP6 512 x2

EP8 512 x2

BB’ 2
(EP4 and EP8 not available)

EP2 512 x4

EP6 512 x4

CC’ 2
(EP4 and EP8 not available)

EP2 1024 x2

EP6 1024 x2

AB’ 3
(EP8 not available)

EP2 512 x2

EP4 512 x2

EP6 512 x4

AC’ 3
(EP8 not available)

EP2 512 x2

EP4 512 x2

EP6 1024 x2

BA’ 3
(EP4 not available)

EP2 512 x4

EP6 512 x2

EP8 512 x2

BC’ 2
(EP4 and EP8 not available)

EP2 512 x4

EP6 1024 x2

CA’ 3
(EP4 not available)

EP2 1024 x2

EP6 512 x2

EP8 512 x2

CB’’ 2
(EP4 and EP8 not available)

EP2 1024 x2

EP6 512 x4

D 3
(EP4 not available)

EP2 512 x3

EP6 512 x3

EP8 512 x2

E 2
(EP4 and EP6 not available)

EP2 1024 x3

EP8 512 x2

F 1
(EP4, EP6 and EP8 not available)

EP2 1024 x4

Endpoint FIFO Architecture of EZ-USB FX1/FX2

6

Multiple Buffering

The FX1 endpoint FIFO architecture uses the concept of
“multiple buffering” to help minimize the delay involved in
waiting for buffer space before being able to reuse the
endpoint. This section elaborates the purpose and use of
multi-buffering while configuring the endpoints.

The advantage of having endpoint multi buffered is that even
though the data armed is still in transfer over the USB (maybe
waiting for the host to send IN token for an IN endpoint), the
endpoint will not appear full as there is another buffer
available. So as far as the 8051 is concerned, it can
start/continue (re)filling the buffer. Meanwhile the host may
send an IN token to which the core will respond with the data
packet. Once the core receives an ACK from the host, the
buffer will be released back to the 8051 for reuse. This
multi-buffering feature allows the 8051 to save time. Rather
than waiting for the busy/FF bit to be cleared it can start filling
another buffer while one is being 'worked on' by the USB core
(SIE).

As far as the 8051is concerned, there is no difference in
addressing an endpoint that is single buffered or
double/triple/quad buffered. Buffering only allows the 8051 to
access a buffer space while the other is in transition over
USB. Endpoint buffering has no effect on the depth (which is
set by the SIZE bit in the EPxCFG register) of the FIFO. The
depth of the FIFO still is 512 bytes (or 1024 bytes if the SIZE
bit is set) and the 8051 must not address an index greater
than 511(or 1023 bytes if the SIZE bit is set) while accessing
the buffer. Internal logic will basically handle the ping ponging
of the buffers automatically.

Note. None of the four large endpoints of the FX1 can be
configured to be ‘single’ buffered. The large endpoints have
to be atleast double buffered for it to be usable.

As already stated earlier, "The CPU can only access the
“active” buffer of a multiple-buffered endpoint. In other words,
firmware must treat a quad-buffered 512-byte endpoint as
being only 512 bytes wide, even though the quad-buffered
endpoint actually occupies 2048 bytes of RAM.

Once the data packet is committed (covered in the next
section), the internal logic will assign the next 512 bytes buffer
as the “active buffer.” This is all done automatically by the FX2
internal logic and is not visible to the 8051. The 8051 and the

external peripheral must treat the buffer as 512 bytes only. In
slave FIFO mode, the external master must avoid writing to a
full FIFO or reading from an empty FIFO. The external master
can use the FIFO full/empty/programmable flag to monitor the
state of the FIFO and decide when to stop accessing the
FIFO.

Endpoint FIFO Architecture
The endpoint architecture of the EZ-USB FX1 (and the FX2)
is quiet different than what was used in the EZ-USB and the
EZ-USB FX. FX1(and FX2) follows a “Quantum FIFO” archi-
tecture which involves moving control of the data packets
from one domain to the other. This allows moving the data
packet instantaneously between the USB and the FIFOs,
without 8051 intervention. The CPU simply configures the
interface, then “gets out of the way” while the unified FX1
FIFOs move the data directly between the USB and the
external interface. This section discusses the different
domains in the EZ-USB FX1 and the data flow/control among
the various domains.

To understand the “Quantum FIFO”, it is necessary to refer to
the three data domains, the USB domain, the 8051 domain
and the Interface domain (also known as Peripheral Domain).
Figure 3 displays the interaction of these domains. Each
domain is independent, allowing different clocks and logic to
handle its data. At a specific time the data access is controlled
by one (or two) of the these three domains. The control of the
data buffer is shifted from one domain to the other, defining
the data path taken by the packet, as summarized below:

OUT transfer:

SIE -->8051-->Peripheral

IN transfer:

Peripheral-->8051-->SIE

The USB domain is serviced by the SIE, which receives and
delivers FIFO data packets over the two-wire USB bus. The
USB domain is clocked using a reference derived from the
24-MHz crystal attached to the FX1 chip.

The 8051 domain is the intermediate domain that allows the
user to probe the USB packet before it is sent to its “desti-
nation”: for an IN transfer the destination is the host and for
an OUT transfer it is the external peripheral wired to the FX1

8051 Domain

USB Core

(SIE Domain)

Interface/PeripheralAUTO IN MODE

AUTO OUT MODE

MANUAL
M

ODE (I
N)

(Slave FIFOs)

Internal
Master
(GPIF)

Figure 3. Interrelation of the FX1/FX2 Domains

(CPU)

M
ANUAL

M
ODE (O

UT)
M

ANUAL M
ODE (IN)

M
ANUAL M

ODE (OUT)

External
Peripheral
(Slave)

External
Peripheral
(Master)

FX1
GPIF MODE

SLAVE FIFO MODE

Domain

Endpoint FIFO Architecture of EZ-USB FX1/FX2

7

The Interface domain can load and unload the endpoint
FIFOs. An external device such as a DSP or ASIC (wired to
the FX1) can supply its own clock to the FIFO interface, or the
FX1’s internal interface clock (IFCLK) can be supplied to the
interface.

The classic solution to the problem of reconciling two different
and independent clocks is to use the FIFO. As mentioned
earlier, the FX1’s FIFOs have an unusual property: They’re
Quantum FIFOs, which means that data is committed to the
FIFOs in USB-size packets, rather than one byte at a time.
This is invisible to the outside interface, since it services the
FIFOs just like any ordinary FIFO (i.e., by checking full and
empty flags). The only minor difference is that when an empty
flag goes from 1 (empty) to 0 (not empty), the number of bytes
in the FIFO jumps to a USB packet size, rather than just one
byte. So a high data rate is attributed to this quantum nature
of data transfer.

FX1 provides two options of handling the endpoint buffer
once it is filled with the USB data. This depends on the mode
of the endpoint FIFO which is set by bits 3 and 4 of the
EPxFIFOCFG register (x=2,4,6,8). These modes include the
auto mode and the manual mode. Depending on the mode,
the 8051 domain may or may not be in the data path
discussed earlier.

On power-up, OUT endpoint come up unarmed (covered in
the next section) and are in the control of the 8051 domain
only. IN endpoints also come up unarmed and can be
accessed either by the 8051 or the external peripheral. Also,
on power-up EP6 and EP8 are configured as double-buffered
IN endpoints in manual mode, whereas EP2 and EP4 are
configured as double-buffered OUT endpoints in manual
mode.

In manual mode, the 8051 has the initial access to the data
in the endpoint FIFO buffer. The control of the OUT endpoint
buffer is shifted to the USB domain by arming the endpoint.
When an OUT endpoint is armed it is under the control of the
USB domain. Data send by the host is accepted by the core.
The core ACKs the OUT transfer. Once the core has ACK’ed
the OUT transfer, the 8051 gains access to the FIFO buffer
and can modify the data as required. The 8051 can either
move the data to interface domain or just ignore it. Once the
data packet is committed to the interface domain, the 8051
loses access to the FIFO buffer and the interface domain now
has access to the data buffer.

In the Interface domain, the FIFOs can be controlled by an
external master or an internal master. External master either
supplies a clock and read/write enable signals to operate
synchronously, or strobe signals to operate asynchronously.
Alternately, the FIFOs can be controlled by an internal FX1
timing generator called the General Programmable Interface
(GPIF). The GPIF serves as an internal master, interfacing
directly to the FIFOs and generating user-programmed
control signals for the interface to external logic. Additionally,
the GPIF can be made to wait for external events by sampling
external signals on its RDY pins. Alternately, if using the part
in slave FIFO mode, the external master may access the
FIFO using various control signals. For further information on
the various control signal input/outputs please refer to
chapters 9 and 10 of the Technical Reference Manual. The
GPIF runs much faster than the FIFO data rate to give good
programmable resolution for the timing signals. It can be

clocked from either the internal FX1 clock or an externally
supplied clock.

Figure 3 also illustrates the data path for manual and auto
mode. In manual mode, the 8051 is involved in moving data
between the USB domain and the interface domain. In Auto
mode, the CPU simply configures the interface, then “gets out
of the way” while the unified FX1 FIFOs move the data directly
between the USB and the external interface.

Depending on the domain that has access to the FIFO,
different registers are used to query the FIFO status. The
EPxxFIFOFLGS (x= 2, 4, 6, 8) register indicates the status of
the FIFO under the control of the peripheral domain.
EP2468STAT register is used to indicate the status of the
FIFOs under the control of the 8051 domain. So basically if
the FIFO is in the interface domain, in order to determine the
status of the flags (EF, FF, PF) the 8051 must check the
EPxxFIFOFLGS register (one in xdata space or the SFR). For
an IN transfer, once data is committed to the host (data packet
in USB domain) the 8051 can check the status of the endpoint
FIFO probing the EP2468STAT register bits. The external
peripheral may check the status of the FIFO in the interface
domain by monitoring the FIFO flag pins: FLAGA, FL:AGB,
FLAGC and FLAGD

The following section discusses this dataflow and the path
taken for an IN and OUT transfer.

Data Flow
This section explains the data flow and the significance of
arming and committing a data packet when referring to an
OUT versus an IN endpoint.

In general, an endpoint is considered to be armed when the
USB domain has control over the endpoint and the host can
send data to the endpoint (OUT) or receive data from the
endpoint (IN). An IN endpoint is considered armed when it
has data to send to the host when the host sends an IN token.
An OUT endpoint is considered to be armed when it can
accept data from the host when the host sends an OUT token.

A data packet is considered to be committed when it is under
the control of the “destination”: for an IN transfer the desti-
nation is the USB domain, for an OUT transfer the destination
is the peripheral domain. Although the essence is the same,
“arming” and “committing” an endpoint has different meaning
based on the endpoint direction and endpoint mode (auto or
manual) as defined below.

IN endpoint:

Data path (manual mode)

host <---- USB core (SIE) <---- 8051 (CPU) <----- Interface

Data path (auto mode)

host <---- USB core (SIE) <---- Interface

Arming

Causing the core to be able to respond to the IN token (sent
by the host) with data packet. Arming an endpoint essentially
means shifting the control of the data packet to the USB
domain. Once the endpoint is armed, USB core is in control
of the packet. The 8051 may arm the endpoint by writing to
the byte count register with the number of bytes that it would
like to send to the host in that packet. The maximum number
of bytes is limited by the smaller of what is defined in the

Endpoint FIFO Architecture of EZ-USB FX1/FX2

8

wMaxPacketSize field of the endpoint descriptor and the
SIZE bit set in the EPxCFG register. An IN endpoint can be
armed by the 8051 only.

Committing

Moving the control of the data packet from the 8051 domain
(when in manual mode) or the interface (GPIF or slave FIFO)
domain (when in auto mode) to the destination (the USB
domain).

For an in endpoint the result of arming or committing a data
packet is the same: USB domain is in control of the data
packet. The 8051 may arm the endpoint or commit the packet
to the USB domain. The interface domain commits the packet
to the USB domain (can also use the word arm here, but
typically, commit is used instead).

Once an IN endpoint is armed/committed, the only way to
abort the transfer is by resetting the endpoint FIFO using the
FIFORESET register.

OUT endpoint:

Data path (manual mode)

Host ----> USB core (SIE) ----> 8051 (CPU) -----> Interface

Data path (auto mode)

Host ----> USB core (SIE) ----> Interface

Arming

Causing the core to be able to accept data from the host when
the host sends OUT tokens. Arming an OUT endpoint essen-
tially means making buffer space available for the USB core
(SIE) to accept data from the host. Once an OUT endpoint is
armed, the USB core is in control of the packet buffer. The
8051 may arm the endpoint by writing to the byte count
register with any value.

Committing

Causing the Interface domain to be in control of the data
packet. In auto mode, when an ’armed’ OUT endpoint
receives data from the host and the core ACKs the transfer,
the control of the data packet is automatically ’shifted’ to the
interface domain. This committed packet is now under the
control of the interface domain (GPIF slave FIFO). In manual
mode, when an ’armed’ OUT endpoint receives data from the
host and the core ACKs the transfer, the data packet is NOT
moved to the interface domain. This (moving control of the
data packet to the interface domain) needs to be done by the
8051.

8051 is in control of the data packet that was sent by the host
to the OUT endpoint. It can ’commit’ the packet to the
interface domain by writing to the OUTPKTEND register or
the bytecount register as explained in the Technical
Reference Manual. The 8051 also has a choice of not moving
this packet to the interface domain but rearming the endpoint
buffer by simply writing to the byte count register with the
SKIP bit set. If the SKIP bit is set the control of the data buffer
is moved back to the USB domain, in effect allowing the core
to accept new data.

For an OUT endpoint the result of arming or committing is
NOT the same. Arming the endpoint enables the core to
accept new data packet (data packet is in control of the USB
domain). Committing causes the data packet to be in the
control of the interface domain (the destination).

Once an OUT endpoint is armed/committed, the only way for
the 8051 to abort (dis-arm) the transfer is by resetting the
endpoint FIFO using the FIFORESET register.

Manual vs. Auto Mode
In order to meet the high-speed data throughput, the data
packets can be directly moved from the USB domain to the
Interface domain and vice-versa without the 8051’s inter-
vention. This is done when the FIFOs are configured for auto
mode. Figure 4 below illustrates the interrelation of the three
domains of the FX1 in the manual and auto mode.

Manual Mode

If the 8051 sets bit 3 (AUTOIN for an IN endpoint) or bit 4
(AUTOOUT for an OUT endpoint) in the EPxFIFOCFG
register to 0, the 8051 receives an interrupt on the buffer
being filled with USB data and connection of the buffer to the
endpoint is under 8051’s control. This mode of operation is
known as the manual mode. In this mode the 8051 is in
charge of “committing” the data when the number of bytes in
the buffer meets a desired level.

IN Transfer: Peripheral to Host

For an IN transfer, the FX2 provides two optional ways of
committing the data once the endpoint IN buffer is filled. The
8051 may commit this packet by doing either of the following

1. Writing to the byte count register with the number of bytes
to send in the specific packet.

2. Writing to the INKPKTEND register with the IN endpoint
number.

Note.

1. Using the second method to commit data is faster as it
involves writing to a single register. Using the byte count
registers involves writing to two registers and hence more
instruction cycles.

2. Regardless of the number of bytes in the IN endpoint, the
external master may also commit the packet anytime using
the PKTEND pin. PKTEND is usually used when the
master wishes to send a “short” packet (a packet smaller
than the size specified in the EPxAUTOINLEN register).

OUT Transfer: Host to Peripheral

In manual mode, the 8051 needs to write to the byte count
register with the SKIP bit set to 0 in order to commit data to

8051

USB
(SIE) INTERFACE

AUTO IN MODE

AUTO OUT MODE

MANUAL MODE MANUAL MODE
(OUT) (OUT)

MANUAL MODE
(IN)

MANUAL MODE
(IN)

(Endpoint FIFOs)

External
Master
(Peripheral

Device)

Internal
Master
(GPIF)

Figure 4. Data Flow in FX1/FX2

(Slave)

Peripheral
Device

(CPU)

Endpoint FIFO Architecture of EZ-USB FX1/FX2

9

the master. If the SKIP bit is set to 1, data is simply ignored
(discarded). Writing to the byte count register automatically
rearms the endpoint.

Auto Mode

If the 8051 sets bit 3 (AUTOIN for an IN endpoint) or bit 4
(AUTOOUT for an OUT endpoint) in the EPxFIFOCFG
register to 1, data in the FIFO buffer (slave FIFO) is automat-
ically and instantly connected to the endpoint FIFO. The
endpoint FIFO flags and buffer counts (EPxFIFOBCH/L,
EPXXFIFOFLAGS) simultaneously indicate the change in the
FIFO status. In Auto mode, the CPU simply configures the
interface, then “gets out of the way” while the unified FX1
FIFOs move the data directly between the USB and the
external interface.

IN Transfer: Peripheral to Host

When the number of bytes in the FIFO reaches the value set
in EPxAUTOINLEN, the control of the data packet is automat-
ically shifted from the interface domain to the USB domain.

In this auto mode when EPxAUTOINLEN is specified, the
external master can stream data continuously through the
FIFO, over the USB to the host without the 8051’s inter-
vention. If the number of bytes in the FIFO is less than what
is specified in EPxAUTOINLEN, the packet being a short
packet will not be committed automatically to the USB. This
short packet needs to be committed manually. To commit this
last packet manually,

1. have the external master pad the packet with dummy data
in order to meet size specified in the EPxAUTOINLEN
register

2. have the external master assert the PKTEND pin

3. have the 8051 write to the INPKTEND register with the
endpoint number.

OUT Transfer: Host to Peripheral

In auto mode regardless of the number of bytes received from
the host, the data packet is committed to the peripheral
domain instantly as it is received from the host.

Conclusion
After having read this application note, the reader should be
familiar with the FIFO architecture of the EZ-USB FX1. This
application note can also be used by an EZ-USB FX2 user to
understand the basics regarding the FIFO architecture and
the data flow.

The EZ-USB FX2 shares the same FIFO architecture and
endpoint configuration, and multiple buffering scheme. Being
a high speed USB microcontroller, the EZ-USB FX2 can
operate at full and high speed. When operating at high speed,
the maximum packet size of an endpoint defined as bulk, can
be up to 512 bytes. Hence each quantum FIFO can accom-
modate about 512 bytes, even if the physical buffer size is
1024 bytes (when the SIZE bit is set). It makes sense,
therefore, to configure high speed (or full-speed) BULK
endpoints of the EZZ-USB FX2 as 512 bytes rather than
1024, so that fewer bytes are left unused. When configured
as 512 bytes and operating at high speed, the 8051 and the
external master should not access the FIFO deeper than 512
bytes.

Further information on additional features of the EZ-USB FX2
(ex: high bandwidth endpoints) can be found in the EZ-USB
FX2 Technical Reference Manual.

EZ-USB is a registered trademark, and EZ-USB FX1, EZ-USB FX2, and EZ-USB FX2LP
are trademarks, of Cypress Semiconductor Corporation. All product and company names
mentioned in this document are trademarks of their respective holders.

Approved AN4067 10/19/04 kkv

