
Cypress Semiconductor Corporation • 3901 North First Street • San Jose, CA 95134 • 408-943-2600
September 9, 2003, rev. 0.A

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

Introduction
Applications like audio and video that require continuous data
flow without interruption use streaming-through-endpoints to
transfer data over USB. In order to maintain the smoothness
of flow and to minimize glitches in the application because of
lost data, it is very important that the design be architected in
such a manner that the data transfer rate meets what is
required by the application. Failure of the device and host to
maintain the required rate of data transfer may affect perfor-
mance, adversely affecting the quality of images or sound in
the case of video and audio applications, respectively.

This application note provides brief background information
on what is involved while designing for a streaming appli-
cation using the EZ-USB FX2 part. It provides information
on streaming data through bulk endpoints, isochronous
endpoints and high-bandwidth isochronous endpoints along
with pitfalls to consider and avoid while using the FX2 for
designing high-bandwidth applications. The application note
also provides streaming example firmware that demonstrates
how to setup the endpoint for streaming data through isoch-
ronous or bulk endpoints. This application note is included as
a part of the CYStream Reference Design Package. The
reference design also includes a host application and driver
that enables streaming data to the FX2 running the streaming
example firmware.

Streaming Applications
Video devices (video compression engines, TV tuners,
MPEG encoders), audio devices (MP3 players), and
telephony devices are a few of the numerous applications that
use streaming transfers. Although isochronous endpoints are
used for designing streaming applications, bulk endpoints
can also be used to design the same type of application.
Depending on the data throughput and bandwidth required,
the designer may opt for either type of endpoint.

Isochronous endpoints have a prenegotiated amount of USB
bandwidth with a prenegotiated delivery latency. The
pre-negotiated bandwidth is defined by setting the
wMaxPacketSize field of the endpoint descriptor. The latency
is defined by setting the bInterval field of the endpoint
descriptor. This is discussed further in the High-bandwidth
Transfers section of this application note. Isochronous
endpoints have a guaranteed bandwidth but not guaranteed
data delivery. The timely delivery of isochronous data is
ensured at the expense of potential transient losses in the
data stream. No retries of data transfer are ever done for
isochronous data. This is the nature of data transfers
involving isochronous endpoints. Isochronous endpoints can
also be configured to design a high-bandwidth transfer appli-
cation.

Bulk endpoints on the other hand, cannot be configured for
high-bandwidth transfers. However, bulk endpoints can
provide a greater maximum throughput than isochronous
endpoints can with a trade off that the bandwidth is not
guaranteed. Data is transferred through this type of endpoint
as bandwidth is available. Bulk data traffic can become bursty
when there is additional data traffic on the USB. Bulk
endpoints use ACK/NAK hand shaking to ensure error-free
data transfers.

The designer must make a decision what endpoint type to use
based on the bandwidth and throughput requirements of their
application. While designing any streaming application the
designer must consider the following:

• Data throughput required on the peripheral end.

• Data throughput required on the USB end to meet the data
rates required by the host application.

• Buffering requirements of the system.

• Endpoint type suitable to meet the required bandwidth and
data rates.

• High-bandwidth requirement and how many packets per
microframe required.

• Driver support for high-bandwidth transfers.

• Does the target OS for this application support high-band-
width transfer.

It is the intent of the CYStream Reference Design Package to
help the reader understand streaming applications in general
and evaluate the reference design accordingly. This appli-
cation note provides background USB related technical infor-
mation on designing FX2 firmware for a streaming application
using bulk or isochronous endpoints by presenting the major
highlights of the code example included in the reference
design.

High-Bandwidth Transfers
High-bandwidth transfers are only defined for high-speed
transfers using periodic endpoints: isochronous and interrupt.
A high-speed endpoint that requires more than 1024 bytes
per microframe is called a high-bandwidth endpoint. A
high-bandwidth endpoint can transfer multiple packets, up to
three packets of 1024 bytes each, per microframe. This yields
a maximum transfer rate of 24 MBps. This application note
covers information on high-bandwidth transfer through isoch-
ronous endpoints only.

The number of transfers per microframe is defined in the
wMaxPacketSize field of the endpoint descriptor. Bits 12...11
of this field specify the number of additional transactions per
microframe and can be set to the following:

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

2

• 00 = None (one transaction per microframe of 0—1024
bytes)

• 01 = 1 additional (two transfers per microframe, 0–2048
bytes per microframe)

• 10 = 2 additional (three transfers per microframe, 0–3072
bytes per microframe)

• 11 = Reserved.

Per the USB 2.0 specification, an isochronous endpoint must
specify its required bus access period. This is done by setting
the bInterval field of the endpoint descriptor. The bInterval
field of the endpoint descriptor defines the rate at which the
endpoint will be polled by the host. This provides a
mechanism for slowing down the rate at which the host will
service the endpoints.

The bInterval value is used as the exponent for a 2(bInterval-1)

value; for example, a bInterval of three means a period of four
(2(3-1)). For full and high speed isochronous endpoints, this
bInterval value must be in the range from 1–16(inclusive).
The desired period is specified as 2(bInterval-1) × F
(frame/microframe) time. F is in units of 125 µs for high speed
and 1 ms for full speed. This allows full- and high-speed
isochronous transfers to have rates slower than one trans-
action per (micro)frame.

In the example described in this application note, the polling
rate for all isochronous endpoint for each of the alternate
setting is set to 1. This means that the host will poll this
endpoint once (2(1-1)) every microframe. Further details on
this endpoint descriptor setting are presented in the
Streaming Firmware Example section.

To keep track of the data packet transfer during the same
microframe, high-bandwidth isochronous transfer uses a
mechanism called the PID sequencing. While designing with
high-bandwidth endpoints, it is very important that the design
architecture take the data PID sequencing into consideration
as described in the next section.

Data PID Sequencing
For synchronization of data packets during the same
microframe a technique called data Packet ID (PID)
Sequencing is used for all high-bandwidth transfers. This is
similar to the data toggle synchronization used for bulk and
interrupt endpoints, except that there are four different PID
used: MDATA, DATA0, DATA1, DATA2. One of these PIDs is
used for each of the data packet transferred during the same
microframe.

For an IN transfer, the host will expect the number of packets
per microframe specified in the device descriptor. However,
the device can send less packets than what is specified in the
device descriptor. To do this, the device must correctly set the
data PID in the first IN packet to identify the number of
packets the device can send during that microframe. The host
reads the returned data PID to determine the number of
additional IN tokens the host may send during the same
microframe. The host must accept the data PID value
returned from the device and not send more IN tokens than
what the device can support during that microframe.

Consider a device descriptor that defines an IN endpoint with
three transfers per microframe. For a device to send three
packets of data per microframe, the device must respond to
the first IN token from the host with a data PID of DATA2. The
host, seeing a data PID of DATA2, knows that there are two
more data packets available and to send two more IN tokens
in the current microframe. If the device can only send two
packets of data during the microframe, it must respond to the
first IN token from the host with a data PID of DATA1. This will
let the host know that there is one more packet left to receive
from the device and to send only one more IN token during
the current microframe. If the device has only one packet
worth of data, it must respond to the first IN token from the
host with the a data PID of DATA0. This tells the host that this
is the last packet in the microframe and not to send any more
IN tokens in the current microframe. If the device has no data
at all, it may either send a Zero Length Packet (ZLP) with data
PID of DATA0 or not send any data at all. The case of ZLP is
described further in the section “DATA PID Mismatch Consid-
eration.” This is basically how the PID sequencing
mechanism works for isochronous IN transfers.

Data PID sequencing used for a high-speed, high-bandwidth
isochronous OUT endpoint is different from what is used for
an IN endpoint. For OUT transfers there is an additional data
PID called the MDATA (More Data) to indicate that more data
packets will be sent during the current microframe. The data
PID of the last packet sent lets the device know how many
packets were sent by the host during the current microframe.
The host issues a DATA0 data packet when there is a single
transaction. When there are two transactions per microframe,
the host issues a data PID of MDATA for the first transaction
and a data PID of DATA1 for the second transaction. The
device, seeing a data PID other than MDATA, knows that it is
the last packet in the current microframe. Seeing a data PID
of DATA1, the device knows that there were two packets sent
during the current microframe. When there are three transac-
tions per microframe, the host uses a data PID of MDATA for
the first two transactions and a DATA2 PID for the third and
last transaction. Seeing a DATA2 PID, the device knows that
this was the last packet and there were three packets sent
during this current microframe. For an OUT transfer, the host
must not send more data packets than what is specified in the
endpoint descriptor within the same microframe.

Data PID sequencing allows isochronous endpoints to detect
if a packet was lost/damaged during a microframe. Although,
there is no recovery mechanism involved as this is basically
the nature of isochronous transfers. The table below shows
the order of data packet PIDs that are used in subsequent
transactions within a microframe for high-bandwidth isoch-
ronous IN and OUT transfers.

Table 1. PID Sequencing for Isochronous Endpoints

Number of
Packets

Available Direction

DATA PID

Packet 1 Packet 2 Packet 3

3 IN DATA2 DATA1 DATA0

2 IN DATA1 DATA0 –

1 IN DATA0 – –

3 OUT MDATA MDATA DATA2

2 OUT MDATA DATA1 –

1 OUT DATA0 – –

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

3

The EZ-USB FX2 isochronous endpoints supports data PID
sequencing. While designing for IN transfers, the designer
must make sure that the FX2 device is able to supply the
number of packets per microframe as specified in the
endpoint descriptor and the EPxISOINPKTS register of the
FX2. For an OUT transfer, the host application/driver should
be designed to provide the number of packets per microframe
as stated in the endpoint descriptor. For an IN transfer, if the
device is unable to supply the number of packets per
microframe as specified in the endpoint descriptor, there may
be a situation where data PIDs go out of sync and result in
data PID mismatch. Further information is provided on this
scenario in the “Data PID Mismatch Consideration” section.

Set-up for High-Bandwidth Transfer on the FX2
To configure an IN endpoint for high-bandwidth isochronous
transfers, the number of packets per microframe must be
defined in the EPxISOINPKTS register of the FX2.

EPxISOINPKTS

Bit 1-0 INPPF1:0 IN Packets per Frame

The EPxISOINPKTS (× = endpoint number: 2, 4, 6 or 8)
register is used to set the number of packets per microframe
that can be sent through endpoint ×. Bits 0 and 1 determine
the number of packets per microframe when the device is in
high-speed mode. The designer must make sure that the FX2
is able to provide this number of packets every microframe
stated in this register. If the FX2 falls short of the number of
packets per microframe as stated in this register, it may run
into a scenario of data PID mismatch.

No specific registers in the FX2 need to be set for transfers
through isochronous OUT endpoints. The device must report
the number of packets desired per microframe in the endpoint
descriptor.

Data PID Mismatch Consideration
For an IN transfer, when the host requests data, the device is
expected to return the data with the correct data PID. As
explained above, the data PID of the first packet received
from the device lets the host know how many packets to
expect in the same microframe. The FX2 core does not look
ahead at the number of packets committed to the USB. What
does this mean? Well, if the EPxISOINPKTS is set to 3, the
FX2 will always send the first packet with a data PID of DATA2
regardless of how many packets has already been committed
to the USB core. If the EPxISOINPKTS is set to 2, the FX2
will always send the first packet with a data PID of DATA1
regardless of how many packets have already been
committed to the USB core.

So if the EPxISOINPKTS is set to 3 and only two packets
have been committed to the USB and is available to the core
to send to the host, the FX2 will respond to the first IN token
with data PID DATA2. Seeing this first packet with DATA2
PID, the host (driver) will expect two more data packets and
send two more additional IN tokens in the same microframe.
The device will respond to the second IN token with data PID
of DATA1. The device will not respond to the third IN token as

there is no more data available (only two packets were
committed to the core during the current microframe). This is
a data PID mismatch error and will result in a USB
Turnaround Error. It is up to the host to determine how it will
handle and recover from this error condition.

The same problem will occur if EPxISOINPKTS is set to 2 and
the FX2 core has only one packet and the first packet is sent
with DATA1 PID. If the EPxISOINPKTS is set to 1, of course
there is no contention as the core will always start the packet
with the DATA0 PID and the host will know not to expect any
more packets in the current microframe.

Since the FX2 core does not look ahead as to how many
packets are available and sets the data PID of the first packet
based on the setting of EPxISOINPKTS, it is bound to run into
a scenario where it starts the first transaction with the wrong
data PID. Starting with the incorrect PID causes bus
turnaround/time out error. The user host driver must be
designed in such a way as to be able to overcome this error.

There may also be a situation when there is no data available
during a microframe. If the FX2 does not respond with any
data during a microframe and the host is expecting data, there
might be some potential error on the host end application.
The driver must be designed so as to handle this case. An
alternate solution is to make sure that the FX2 sends a zero
length packet when there is no data available. There is no
mechanism to allow the FX2 to respond with a ZLP automat-
ically when there are no data packets available to meet the
number set in EPxISOINPKTS. So, in this case, there are two
options:

1. Have some external logic commit a ZLP by asserting the
PKTEND pin appropriately. Hence meeting the number of
packets set in the EPxISOINPKTS register.

2. Have the external peripheral clock in filler data to keep
stream running and have the host end driver filter out this
filler data from the stream.

The host driver should be designed so that it is able to handle
either of the cases of no data at all during a microframe or less
number of transaction per microframe than what is stated in
the endpoint descriptor. Cypress’s new and improved driver
for the development kit handles the issue when the number
of packets received by the device is less than what is stated
in the endpoint descriptor, by propagating the error up to the
client application. This driver CYdvk.sys (binary format only)
is also included with the CYStream Reference Design
Package, which is discussed further in the next section.

CYStream Reference Design Package
The CYStream Reference Design Package is a software and
example firmware that does the following:

1. Demonstrate isochronous and bulk streaming perfor-
mance over USB with the EZ-USB FX2 development kits.

2. Provide tools and sample firmware that can be used by
developers interested in USB isochronous or streaming
applications.

This package includes a host application that demonstrates
isochronous and bulk streaming using the existing EZ-USB
development kits, CY3681, which demonstrate the EZ-USB
FX2’s throughput performance for:

R R R R R R R/W R/W
X

b7 b6 b5 b4 b3 b2 b1 b0

INPPF1 INPPF00 0 0 0 0 0

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

4

• High-speed high-bandwidth isochronous streams.

• High-speed isochronous and bulk streams.

• Support for full-speed isochronous and bulk streams.

This reference design includes a host application
(CYStream.exe) that uses the CYdvk.sys driver to interface
with the EZ-USB FX2 development board. The device has
multiple alternate settings using isochronous IN/OUT
endpoints, bulk IN/OUT endpoints, and high-bandwidth
isochronous IN/OUT endpoints. The host application allows
you to change to different alternate settings. The application
also shows the average throughput during the transfer and
the average CPU utilization.

The source code for the FX2 device is provided in this
reference design package and the major highlights are briefly
discussed in the next section.

Streaming Firmware Example
The example code included with the CYStream Reference
Design Package demonstrates how to set up endpoints (bulk
and isochronous) of the FX2 for streaming data. This section
covers the major routines of the code in detail. The example
includes the following source files:

1. The frameworks file, fw.c.

2. The descriptor file, dscr.a51.

3. The file CyStream.c, which has all the initialization for the
the endpoint buffers and other configuration register. It also
initializes the FIFO buffers with a specific data pattern.

The FX2 endpoints FIFO can be configured to either manual
mode (default state) or auto mode. In manual mode, the 8051
is responsible for committing data; where as in auto mode the
data is committed automatically once the number of bytes in
the FIFO meets the level set in a specific FX2 register known
as EPxAUTOINLEN. Refer to the FX2 technical reference
manual for further information on this register setting. For an
OUT transfer, in order to commit data to the external
peripheral, the 8051 needs to write to the byte count register
with the SKIP bit set to 0. If the SKIP bit is set to 1, data
received from the host is simply ignored (discarded). Writing
to the byte count register with any arbitrary value re-arms the
endpoint.

The example presented in this application note uses the
manual mode setting of the endpoint FIFO, where the 8051
is responsible for committing data. There is no external
master involved in this example. Section CYStream.c
presents the code section that perform data transfers over
USB through IN/OUT endpoint for various alternate settings.

Descriptors File: dscr.a51

This file has the USB standard descriptors defined in the
appropriate order. There are seven alternate settings defined
in the descriptor table for interface 1 when the device is
operating in high-speed. The descriptor defines four alternate
settings for full-speed operation. Each alternate setting
configures the endpoints for either bulk or isochronous
transfer. Two alternate settings configure isochronous
endpoints for high-speed high-bandwidth transfer. This
section also discusses the endpoint descriptor setting for bulk
endpoint, isochronous endpoint and high-bandwidth isoch-
ronous endpoint. Please refer to the source code for details

on the field setting of the endpoint descriptor for various
alternate setting. Following is a sequential list of the
descriptor as defined in the dscr.a51 source file:

• Device descriptor

• Device qualifier

• High-speed configuration descriptor

— Interface descriptor for alternate setting 0

• Endpoint descriptors

— Interface descriptor for alternate setting 1

• Endpoint descriptors

— Interface descriptor for alternate setting 2

• Endpoint descriptors

— Interface descriptor for alternate setting 3

• Endpoint descriptors

— Interface descriptor for alternate setting 4

• Endpoint descriptors

— Interface descriptor for alternate setting 5

• Endpoint descriptors

— Interface descriptor for alternate setting 6

• Endpoint descriptors

• Full-speed configuration descriptor

— Interface descriptor for alternate setting 0

• Endpoint descriptors

— Interface descriptor for alternate setting 1

• Endpoint descriptors

— Interface descriptor for alternate setting 2

• Endpoint descriptors

— Interface descriptor for alternate setting 3

• Endpoint descriptors

• String descriptor

Table 2 displays the endpoint configuration for various
alternate settings for full-speed operation and Table 3 defines
the endpoint configuration for various alternate settings for
high-speed operation.

Table 2. Different Alternate Setting in Full-speed Mode

Alternate
Setting

Number
of End-
points

Endpoint Number
Direction (Type)

Maximum
Packet Size

(Bytes)

0 1 2 IN (Bulk) 64

1 1 2 OUT (Bulk) 64

2 1 2 IN (Isochronous) 1023

3 1 2 OUT (Isochronous) 1023

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

5

An endpoint descriptor is a seven byte descriptor that defines
the endpoint characteristics. The first byte of this descriptor
defines the length of the descriptor (0x07) which is followed
by the descriptor type (0x05). Both of these are fixed fields
regardless of the type of endpoint. Field byte 2 defines the
endpoint number and direction. Bit 7 of byte 2 defines the
direction of the endpoint and bits 0..6 define the endpoint
number. Byte 3 defines the endpoint type: bulk = 0x02, isoch-
ronous = 0x01. Field 4 is a word (bytes 4 and 5) that defines
the maximum packet size of the endpoint. The last field (byte
6) defines the polling interval of the endpoint. A detailed
description of the byte fields of the endpoint descriptor for
bulk endpoint, isochronous endpoint and high-bandwidth
isochronous endpoint is presented below. For details on the
bit definition of each field of an endpoint descriptor please
refer to section 9.6.6 of the USB 2.0 specification.

Bulk Endpoint Descriptor

This is a seven-byte descriptor that defines the endpoint
characteristics as follows:

07H ;; Descriptor length

05H ;; Descriptor type

82H ;; Endpoint number 2 and direction IN

02H ;; Endpoint type (Bulk)

00H ;; Maximum packet size (LSB)

02H ;; Max packet size (MSB) 512 byte packets/uFrame

00H ;;Polling interval.

The endpoint type field (byte 3) is set to 0x02 which defines
a bulk endpoint type. Bytes four and five, which define the
wMaxPacketSize field, are set to 512 bytes. The polling
interval is not applicable to bulk endpoints and is arbitrarily set
to 0.

Isochronous Endpoint Descriptor

This seven byte descriptor defines the endpoint character-
istics as follows:

07H ;; Descriptor length

05H ;; Descriptor type

82H ;; Endpoint number2 and direction IN

01H ;; Endpoint type (Isochronous)

00H ;; Maximum packet size (LSB)

04H ;; Max packet size (MSB) 1 x 1024 byte packets/uFrame

01H ;;Polling interval.

The endpoint type is set to 0x01 for an isochronous endpoint.
Bytes four and five, which define the wMaxPacketSize field,
are set to 1024 bytes. As this is not a high-bandwidth endpoint
bits 12..11 in the wMaxPacketSize field of the endpoint
descriptor are set to 00 binary, indicating one packet per
microframe. The bInterval field, which is the polling interval,
is set to 1. This means that the host will poll this endpoint
once(2(1-1)) every frame when the device is operating at
high-speed.

High-bandwidth Isochronous Endpoint Descriptor

This is a seven byte descriptor that defines the endpoint
characteristics as follows:

07H ;; Descriptor length

05H ;; Descriptor type

82H ;; Endpoint number 2 and direction IN

01H ;; Endpoint type

00H ;; Maximum packet size (LSB)

14H ;; Max packet size (MSB) 3 x 1024 byte packets/uFrame

01H ;;Polling interval.

The endpoint type field is set to 0x01 for an isochronous
endpoint. Bytes four and five, the wMaxPacketSize field, are
set to 0x0014. As explained in the High-bandwidth Transfers
section, the number of transfers per microframe is defined in
the wMaxPacketSize field of the endpoint descriptor. Bits
12..11, which specify the number of additional transactions
per microframe, are set to 10 binary; indicating two additional
packets per microframe. The bInterval field, which is the
polling interval, is set to 1. This means that the host will poll
this endpoint once (2(1-1)) every frame when the device is
operating at high speed.

For full-speed isochronous endpoints, the maximum packet
size is limited to 1023 bytes and the endpoint cannot be
configured for high-bandwidth transfer. The above examples
of isochronous endpoints are defined for high-speed only.
The polling rate is used in the same manner as used for a
high-speed isochronous endpoint as discussed above.

Frameworks: fw.c

This section of the firmware responds to USB requests from
the host, and implements enumeration and reenumeration.
Refer to the frameworks application note provided in the
development kit (which can also be downloaded from the
Cypress Semiconductor web site at www.cypress.com) for
more specifics on the source code.

Source code: CYStream.c

The following are a few of the major functions that are imple-
mented in this source file. We will refrain from mentioning all
the functions, so please refer to the source code for details.

TD_Init()

This routine is invoked from the main() once at the start. All
the initialization of the endpoints are done in this routine.

The TD_Init routine initializes the endpoint FIFOs and the
buffer with incrementing data bytes. The default alternate
setting of 0 defines only one endpoint: 2 (IN), 512 bytes, quad

Table 3. Different Alternate Setting in High-speed Mode

Alternate
Setting

Number
of End-
points

Endpoint Number
Direction (Type)

Maximum
Packet Size

(Bytes)

0 1 2 IN (Bulk) 512

1 1 2 OUT (Bulk) 512

2 2 2 IN (Bulk) 512

6 OUT (Bulk) 512

3 1 2 IN (Isochronous) 3x1024

4 1 2 OUT (Isochronous) 3x1024

5 1 2 IN (Isochronous) 1x1024

6 2 2 IN (Isochronous) 1x1024

6 OUT (Isochronous) 1x1024

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

6

buffered. So this endpoint is enabled in this routine by setting
the VALID bit in the EP2CFG register. All the four buffers are
initialized with data pattern of incrementing bytes. The
endpoint FIFOs are set to Ports Mode, requiring data to be
provided to the USB core via firmware intervention.

Note. A commercial application would either use the slave
FIFO mode or the GPIF mode to transfer data between the
host and the external peripheral device interfacing with the
FX2. The mode can be set using the IFCONFIG register of
the FX2. Further information on the IFCONFIG register
setting can be found in section 15.5.2 of the Technical
Reference Manual. This IFCONFIG register defaults to the
Ports Mode. In “Ports” mode, all the I/O pins are general
purpose I/O ports. “GPIF master” mode and “Slave FIFO
mode” uses the PORTB and PORTD pins as a 16-bit data
interface to the four FX2 endpoint FIFOs EP2, EP4, EP6 and
EP8.

In this example there is no external peripheral so the mode is
set to Ports mode and the endpoint FIFOs are left to their
default manual mode in which the 8051 is responsible for
(re)arming endpoints and committing data.

A variable called “mycount” is initialed to zero. This variable
maintains the number of times the TD_Poll function is called
in the forever while loop (in main), once the device has
enumerated with an alternate setting that defines an IN
endpoint. The first five bytes of each packet of EP2 is filled
with the value of “mycount,” the current frame number and
microframe number. Figure 1 shows the code for the TD_Init
routine.

TD_Poll()

The function TD_Poll is called repeatedly once the firmware
has re-enumerated. This routine basically updates the first
five bytes of each packet for an IN endpoint with the
“mycount” value, the current frame number and the current
microframe number. For IN transfer, once the endpoint is filled
with the number of bytes, it is committed to the host by the
8051’s setting the byte count register to the number of bytes
in the endpoint FIFO. The code is displayed in Figure 2 below.

void TD_Init(void) // Called once at startup
{
 int i,j;

CPUCS = ((CPUCS & ~bmCLKSPD) | bmCLKSPD1) ; // Set the CPU clock to 48MHz
SYNCDELAY;

 IFCONFIG |= 0x40; // Set the slave FIFO interface to 48MHz
 SYNCDELAY;

 // Using endpoint 2 only (alternate setting 0), zero the valid bit on all others

 EP1OUTCFG = (EP1OUTCFG & 0x7F);
SYNCDELAY;
EP1INCFG = (EP1INCFG & 0x7F);
SYNCDELAY;
EP4CFG = (EP4CFG & 0x7F);
SYNCDELAY;
EP6CFG = (EP6CFG & 0x7F);
SYNCDELAY;
EP8CFG = (EP8CFG & 0x7F);
SYNCDELAY;

 EP2CFG = 0xE0; // DIR=IN, TYPE=BULK, SIZE=512, BUF=4x

USBIE |= bmSOF; // Enable SOF interrupts
mycount = 0;

 // Prepare data
 for (i=1;i<5;i++)
 {
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;
 for (j=5;j<1024;j++)
 {
 EP2FIFOBUF[j] = i;
 }
 EP2BCH = 0x02;
 EP2BCL = 0x00;
 }

Rwuen = TRUE; // Enable remote-wakeup
}

Figure 1. TD_Init Routine

void TD_Poll(void) // Called repeatedly while the device is idle
{
if(EZUSB_HIGHSPEED()) // FX2 in high-speed mode
{ switch (AlternateSetting) // Perform USB activity based on selected
 { // alternate setting
 case Alt0_BulkIN:
 if(!(EP2468STAT & bmEP2FULL))
 { // Send data on EP2
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;
 EP2BCH = 0x02; // Arm endpoint with 512 Bytes
 EP2BCL = 0x00;
 mycount++;
 }
 break;

 case Alt2_BulkINOUT:
 if(!(EP2468STAT & bmEP2FULL))
 { // Send data on EP2
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;
 EP2BCH = 0x02; // Arm endpoint with 512 bytes
 EP2BCL = 0x00;
 mycount++;
 }
 // Check EP6 EMPTY(busy) bit in EP2468STAT (SFR),

// Core sets this bit when FIFO is empty
 if(!(EP2468STAT & bmEP6EMPTY))
 {
 EP6BCL = 0x80; // Re(arm) EP6OUT
 }
 break;

 case Alt3_IsocIN:
 case Alt5_IsocIN:
 if(!(EP2468STAT & bmEP2FULL))
 { // Send data on EP2
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;
 EP2BCH = 0x04; // Arm endpoint with 1024 Bytes
 EP2BCL = 0x00;
 mycount++;
 }
 break;

 case Alt1_BulkOUT:
 case Alt4_IsocOUT:
 // Check EP2 EMPTY(busy) bit in EP2468STAT (SFR),

// Core sets this bit when FIFO is empty
 if(!(EP2468STAT & bmEP2EMPTY))
 {
 EP2BCL = 0x80; // Re(arm) EP2OUT
 }
 break;

 case Alt6_IsocINOUT:
 {
 if(!(EP2468STAT & bmEP2FULL))
 { // Send data on EP2
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;
 EP2BCH = 0x04; // Arm endpoint with 1024 Bytes
 EP2BCL = 0x00;
 mycount++;
 }

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

7

For an OUT transfer, in order to rearm the endpoint to allow
the device to accept data from the host, the 8051 writes to the
endpoint byte count register with any arbitrary value with the
SKIP bit set. This is done after checking and making sure that
the endpoint is not already busy receiving data from the host.

The soft copy of the entire code can be downloaded off the
web. It is also included with the CYStream Reference Design
Software Package.

Performance Analysis
The CYStream reference design can be used to evaluate the
performance of a streaming application. The CYStream
reference design software package includes a host appli-
cation known as the CYStream.exe. This application is used
to interface with the EZ-USB FX2 running the CYStream
firmware. In this section we will present information on the
data throughput achieved using the CYStream firmware on
the FX2. It is recommended that the reader refer to the

CYStream User’s Guide included in the reference design kit
for information on how to set up the FX2 development board
to run the CYStream firmware. Once you have this set up, run
the CYStream host application. Please note that the
CYStream utility tool uses the CYDvk.sys driver to interface
with the FX2 board running the CYStream firmware. So you
must have the device bound to the CYDvk.sys driver. The
CYStream User’s Guide provides step-by-step information on
how to set up and run this application. The data throughput
results will only be discussed here.

Following is a screen capture of the CYStream host appli-
cation window while streaming data, followed by a description
of the fields shown in the window displayed in Figure 3.

Current Throughput: Provides live updating of the current
throughput performance of the USB bus and EZ-USB FX2
over selected endpoints.

Current System CPU Utilization: Provides a visual
indication of the utilization of the computer’s CPU while
streaming over USB.

Transmission Errors: Increments whenever there is an error
reported in the transfer of a buffer.

Bad Packet Errors: Increments whenever there is an error
with a specific packet of a transfer. Many times, both error
fields will report the same error. Isochronous transfers may
have bad packet errors that don’t report as transmission
errors since there is no CRC checking in isochronous
transfers.

Packets Processed: Increments to show the total number of
packets successfully transferred during the streaming test.

/ //Check EP6 EMPTY(busy) bit in EP2468STAT (SFR),
// Core sets this bit when FIFO is empty

 if(!(EP2468STAT & bmEP6EMPTY))
 {

 EP6BCL = 0x80; // Re(arm) EP6OUT
 }
 break;
 }
 break;
}
lse // FX2 is in Full Speed

switch (AlternateSetting) // Perform USB activity based on the
{ // selected alternate setting

 case Full_Alt0_BulkIN:
 if(!(EP2468STAT & bmEP2FULL))
 { // Send data on EP2
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;

EP2BCH = 0x00; // Arm endpoint with 64 Bytes
 EP2BCL = 0x40;

mycount++;
 }
 break;
 case Full_Alt1_BulkOUT:
 // Check EP2 EMPTY(busy) bit in EP2468STAT (SFR),

 // Core set’s this bit when FIFO isempty
 if(!(EP2468STAT & bmEP2EMPTY))
 {
 EP2BCL = 0x80; // Re(arm) EP2OUT
 }
 break;

 case Full_Alt2_IsocIN:
 if(!(EP2468STAT & bmEP2FULL))
 { // Send data on EP2
 EP2FIFOBUF[0] = LSB(mycount);
 EP2FIFOBUF[1] = MSB(mycount);
 EP2FIFOBUF[2] = USBFRAMEL;
 EP2FIFOBUF[3] = USBFRAMEH;
 EP2FIFOBUF[4] = MICROFRAME;

EP2BCH = 0x03; // Arm endpoint with 1023 Bytes
 EP2BCL = 0xFF;

mycount++;
 }
 break;

case Full_Alt3_IsocOUT:
 // Check EP2 EMPTY(busy) bit in EP2468STAT (SFR),

 // Core set’s this bit when FIFO isempty
 if(!(EP2468STAT & bmEP2EMPTY))
 {
 EP2BCL = 0x80; // Re(arm) EP2OUT
 }
 break;

}

Figure 2. TD_Poll Routine

Figure 3. CYStream.exe Application Window Display

Streaming Data Through Isochronous/Bulk Endpoints
on EZ-USB FX2™

© Cypress Semiconductor Corporation, 2003. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.

Average Throughput: Shows performance over the duration
of the streaming test.

Average System CPU Utilization: Shows performance over
the duration of the streaming test.

This application was run on a system with an Intel USB 2.0
host controller running Windows XP (SP1) with the current
version of the Microsoft driver (version: 5.1.2600). A CATC
device was used to capture the data and determine the
number of packets transferred per microframe for each of the
alternate settings. Table 4 shows the results obtained when
the device is operating at high speed; Table 5 shows the
results obtained when the device is operating in full speed. Note that the numbers in column 3 are read from what is

displayed by the CYStream host application. Due to some
overhead on the host end (host application implementation)
the numbers displayed may vary slightly from what is actually
measured off the CATC.

The results show that the maximum throughput rate using
isochronous endpoint is 24 MBps. The same rate can also be
achieved using bulk endpoints when the endpoint is
configured as a quad buffered endpoint, as illustrated by this
example firmware.

All product and company names mentioned in this document are the trademarks of their
respective holders.

Approved AN053 9/9/03 kkv

Table 4. Average Throughput at High Speed

Alternate
Setting

Endpoint
Number/Type

Average
Throughput
(CYStream)

(MBps)

Number of
Transfers per
microframe

(CATC)

0 2 IN (Bulk) 39.967 10

1 2 OUT (Bulk) 31.815 8

2 2 IN (Bulk) 28.100 6-7

6 OUT (Bulk) 31.78 8

3 2 IN(ISO) 24.000 3

4 2 OUT (ISO) 23.975 3

5 2 IN (ISO) 8.000 1

6 2 IN (ISO) 7.997 1

6 OUT (ISO) 8.000 1

Table 5. Average Throughput at Full-Speed

Alternate
Setting

Endpoint
Number/Type

Average
Throughput
(CYStream)

(MBps)

Number of
Transfers per
microframe
(from CATC)

0 2 IN (Bulk) 1.061 17

1 2 OUT (Bulk) 1.113 18

2 2 IN (ISO) 1.006 1

3 2 OUT (ISO) 1.006 1

