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What is Data Compression? 
 

Data compression requires the identification and extraction of source redundancy.  

 

In other words, data compression seeks to reduce the number of bits used to store or transmit information.  

 

There are wide ranges of compression methods that can be so unlike one another that they have little in common 

except that they compress data.  

 

Data compression can be divided into two main types; loss less and lossy compression. 

 

Lossless compression can recover the exact original data after compression. It is used mainly for compressing 

database records, spreadsheets or word processing files, where exact replication of the original is essential. 

 

Lossy compression will result in a certain loss of accuracy in exchange for a substantial increase in 

compression. Lossy compression is more effective when used to compress graphic images and digitized voice 

where losses outside visual or aural perception can be tolerated. Most lossy compression techniques can be 

adjusted to different quality levels, gaining higher accuracy in exchange for less effective compression.  

 

The amount of compression that can be achieved by a given algorithm depends on both the amount of 

redundancy in the source and the efficiency of its extraction. 

 

The Need For Compression 

 
In the past, storing documents were stored on paper and kept in filing cabinets have been very inefficient in 

terms of storage space and also the time taken to locate and retrieve information when required. Storing and 

accessing documents electronically through computers are now replacing this traditional method of storing 

documents. This has enabled us to manage things more efficiently and effectively, so that items can be located 

and information extracted without undue expense or inconvenience. 

 

In terms of storage, the capacity of a storage device can be effectively increased with methods that compress 

a body of data on its way to a storage device and decompresses it when it is retrieved. 

 

In terms of communications, compressing data at the sending end and decompressing data at the receiving end 

can effectively increase the bandwidth of a digital communication link. 

 

At any given time, the ability of the Internet to transfer data is fixed. Thus, if data can effectively be 

compressed wherever possible, significant improvements of data throughput can be achieved. Many files can 

be combined into one compressed document making sending easier. 

In computer graphics, we are interested in reducing the size of a block of graphics data so we can fit more 

information in a given physical storage space. 
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A Brief History of Data Compression 

 

The late 40's were the early years of Information Theory; the idea of developing efficient new coding methods 

was just starting to be fleshed out. Ideas of entropy, information content and redundancy were explored.  

One popular notion held that if the probability of symbols in a message were known, there ought to be a way to 

code the symbols so that the message will take up less space. 

 

The first well-known method for compressing digital signals is now known as Shannon-Fano coding. Shannon 

and Fano [~1948] simultaneously developed this algorithm that assigns binary codeword to unique symbols that 

appear within a given data file. While Shannon-Fano coding was a great leap forward, it had the unfortunate 

luck to be quickly superseded by an even more efficient coding system: Huffman Coding. 

 

Huffman coding [1952] shares most characteristics of Shannon-Fano coding. Huffman coding could perform 

effective data compression by reducing the amount of redundancy in the coding of symbols. It has been proven 

to be the most efficient fixed-length coding method available. 

 

In the last fifteen years, Huffman coding has been replaced by arithmetic coding. Arithmetic coding bypasses 

the idea of replacing an input symbol with a specific code. It replaces a stream of input symbols with a single 

floating-point output number. More bits are needed in the output number for longer, complex messages.  

 

Dictionary-based compression algorithms use a completely different method to compress data. They encode 

variable-length strings of symbols as single tokens. The token forms an index to a phrase dictionary. If the 

tokens are smaller than the phrases, they replace the phrases and compression occurs. 

 

Two dictionary-based compression techniques called LZ77 and LZ78 have been developed. LZ77 is a "sliding 

window" technique in which the dictionary consists of a set of fixed-length phrases found in a "window" into 

the previously seen text. LZ78 takes a completely different approach to building a dictionary. Instead of using 

fixed-length phrases from a window into the text, LZ78 builds phrases up one symbol at a time, adding a 

new symbol to an existing phrase when a match occurs. 
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2.1 Run Length Encoding (RLE) 

 

Run-length Encoding, or RLE is a technique used to reduce the size of a repeating string of characters.  

This repeating string is called a run, typically RLE encodes a run of symbols into two bytes , a count and a 

symbol. RLE can compress any type of data regardless of its information content, but the content of data to be 

compressed affects the compression ratio. RLE cannot achieve high compression ratios compared to other 

compression methods, but it is easy to implement and is quick to execute. Run-length encoding is supported by 

most bitmap file formats such as TIFF, BMP and PCX. 

 

Compression is normally measured with the compression ratio : 

 Compression Ratio = original size / compressed size : 1 

 

Consider a character run of 15 'A' characters which normally would require 15 bytes to store:  

 AAAAAAAAAAAAAAA 

AAAAA  becomes  15A
 

 15A 
 

 

With RLE, this would only require two bytes to store; the count (15) is stored as the first byte and the symbol 

(A) as the second byte. 

 

Consider another example with 16 characters string of: 

000ppppppXXXXaaa 

 

This string of characters can be compressed to form  

 3(0),6(p),4(X),3(a) 

Hence, the 16-byte string would only require 8 bytes of data to represent the string. In this case, RLE yields a 

compression ratio of 2:1. 

 

In run-length encoding, repetitive source such as a string of numbers can be represented in a compressed 

form, for example,  

 1,4,5,1,4,5,1,4,5 

can be compressed to form 

 3(1,4,5) 

Thus, giving a compression ratio of = 9/4: 1 which is almost 2 : 1. 

 

Another simple example is when we have a source of incremental patterns that can be compressed by 

differencing. This is done as shown, given a set of values  

 1,2,3,5,6,7,9 

taking the difference between two adjacent values (eg. 2-1=1, 3-2=1, 5-3=2... etc) we will obtain    

 1,1,2,1,1,2 

This result could be further compressed by representing it as repeated strings, i.e;   

  

2(1,1,2) 

Long runs are rare in certain types of data. For instance, in ASCII text files, long runs seldom occur. To encode 

a run in RLE, it is required that there is a minimum of two characters worth of information, otherwise a run 

of single character takes more space. In other words, when there is no run, there is no compression.    
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In most of the examples above, compression is achieved because there were long character runs. However if 

we observe the data example below, 

XttmprsQssqznO 

We obtain.... 

1(X),2(t),1(m),1(p),1(r),1(s),1(Q),2(s),1(q), 1(z),1(n),1(O) 

which is being expanded from the original data. 
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2.2 Huffman Compression 

 

Huffman compression reduces the average code length used to represent the symbols of an alphabet. 

Symbols of the source alphabet that occur frequently are assigned with short length codes. The general strategy 

is to allow the code length to vary from character to character and to ensure that the frequently occurring 

character has shorter codes. 

 

Huffman compression is performed by constructing a binary tree using a simple example set.  

 

1. This is done by arranging the symbols of the alphabets in descending order of probability.  

2. Then repeatedly adding two lowest probabilities and resorting. This process goes on until the sum of 

probabilities of the last two symbols is 1.  

3. Once this process is complete, a Huffman binary tree can be generated.  

4. If we do not obtain a probability of 1 in the last two symbols, most likely there is a mistake in the 

process.  

5. This probability of 1 that forms the last symbol is the root of the binary tree. 

 

The resultant codewords are then formed by tracing the tree path from the root node to the endnodes 

codewords after assigning 0s and 1s to the branches. 

 

A step-by-step worked example in constructing a Huffman binary tree is shown below:  

 
Given a set of symbols with a list of relative probabilities of occurrence within a message. 

 m0 m1 m2 m3 m4 

 0.10  0.36 0.15  0.2  0.19 

 

(1) List symbols in the order of decreasing probability. 

 m1 m3 m4 m2 m0 

 0.36  0.20 0.19  0.15  0.10 

 

(2) Get two symbols with lowest probability. Give the combined symbol a new name. 

   

 m2  m0 

  0.15  0.10 
 

Combines to form 

   

 A 

 0.25 
 

 

 

(3) The new list obtained is shown below. Repeating the previous step will give us a new symbol for the next 

two lowest probabilities. 

   

  m1  A  m3  m4 

 0.36   0.25  0.20   0.19 
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 m3  m4 

  0.20  0.19 
 

 Combines to form  

   

B 

0.39 
 

 

 

(4) A new list is obtained. Repeating the previous step will give us a new symbol for the following two lowest 

probabilities. 

   

 B m1  A 

 0.39  0.36  0.25 
 

   

   

 m1  A 

  0.36  0.25 
 

  Combines to form  

   

C 

0.61 
 

 

(5) Finally there is only one pair left and we simply combine them and name them as a new symbol.  

   

  B  C 

  0.39  0.61 
 

Combines to form  

   

D 

1.0 
 

(6) Having finished these steps we have : 
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(7) Now, a Huffman tree can be constructed, 0's and 1's are assigned to the branches. 

 
(8)The resultant codewords are formed by tracing the tree path from the root node to the codeword leaf. 

 Symbols  Probabilities  Codewords 

 m0  0.10 011 

m1  0.36 00 

m2  0.15 010 

m3  0.20 10 

m4  0.19 11 
 

 

Notice that compression is achieved by allocating frequently occurring symbols with shorter codeword. 
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2.3. Arithmetic Compression 

 

Arithmetic compression is an alternative to Huffman compression; it enables characters to be represented as 

fractional bit lengths.  

Unlike for Huffman compression, where fractional code lengths are not possible and the allocation of shorter 

codeword for more frequently occurring characters needs at least one-bit codeword no matter how high its 

frequency is.  

Arithmetic coding works by representing a number by an interval of real numbers greater or equal to zero, 

but less than one. As a message becomes longer, the interval needed to represent it becomes smaller and 

smaller, and the number of bits needed to specify it increases. 

 

The figure below shows the subdivision of the current interval based on the probability of the input symbol 

(A) that occurs next.  

 
  

The basic algorithm for encoding a file using arithmetic coding works conceptually as follows: 

(1) Begin with current range [L,H) initialised to [0,1). 

Note: We denote brackets [0,1) in such a way to show that it is equal to or greater than 0 but less than 1. 

 

(2) For each symbol of the file, we perform two steps:  

a) Subdivide the current interval into subintervals, one for each alphabet symbol.  

b) Select the subinterval corresponding to the symbol that actually occurs next in the file and make it 

the new current interval.  

 

(3) Output enough bits to distinguish the current interval from all other possible interval. 

This table shows the source character and its current intervals according to its probability. 

 Source Characters   Probabilities Current Interval [Pi, Pj) 

 A  0.4 [ 0 , 0.4 ) 

 B  0.5  [ 0.4 , 0.9 ) 

 C  0.1  [ 0.9 , 1.00 ) 

The new intervals can be obtained by [ L + Pi (H-L) , L + Pj (H-L) ), where Pi and Pj are the cumulative 

probabilities.  
 

 

 



An Introduction to Data Compression 

Sandeep Gupta 9 

For example, the cumulative probabilities for character B and C are, Pi = 0.4 Pj = 0.9 and Pi = 0.9 Pj = 1.00 

respectively. If we need to encode a file containing symbols BBBC, we obtain the following new interval 

shown in the table below. 

 Input  New Interval [L, H)  

 --  [ 0 , 1 ) 

 B  [ 0.4 , 0.9 ) 

 B  [ 0.6 , 0.85 ) 

 B  [ 0.7 , 0.825 ) 

 C  [ 0.8125 , 0.825 ) 

 
In summary, the encoding process of arithmetic compression is simply one of narrowing the range of possible 

number with every new symbol. The new range is proportional to the predefined probability attached to 

that symbol. 

 


