

An Introduction to Digital Signal
Processors

Select a topic

What is a DSP?
Digital Signal Processors (DSPs) take real-world signals like voice,
audio, video, temperature, pressure, or position that have been
digitized and then mathematically manipulate them. A DSP is
designed for performing mathematical functions like "add", "subtract",
"multiply" and "divide" very quickly.

Signals need to be processed so that the information that they contain
can be displayed, analyzed, or converted to another type of signal that
may be of use. In the real-world, analog products detect signals such
as sound, light, temperature or pressure and manipulate them.
Converters such as an Analog-to-Digital converter then take the real-
world signal and turn it into the digital format of 1's and 0's. From
here, the DSP takes over by capturing the digitized information and
processing it. It then feeds the digitized information back for use in the
real world. It does this in one of two ways, either digitally or in an
analog format by going through a Digital-to-Analog converter. All of
this occurs at very high speeds.

To illustrate this concept, the diagram below shows how a DSP is
used in an MP3 audio player. During the recording phase, analog
audio is input through a receiver or other source. This analog signal is
then converted to a digital signal by an analog-to-digital converter and
passed to the DSP. The DSP performs the MP3 encoding and saves
the file to memory. During the playback phase, the file is taken from
memory, decoded by the DSP and then converted back to an analog
signal through the digital-to-analog converter so it can be output
through the speaker system. In a more complex example, the DSP
would perform other functions such as volume control, equalization
and user interface.

A DSP's information can be used by a computer to control such things
as security, telephone, home theater systems, and video
compression. Signals may be compressed so that they can be
transmitted quickly and more efficiently from one place to another
(e.g. teleconferencing can transmit speech and video via telephone
lines). Signals may also be enhanced or manipulated to improve their
quality or provide information that is not sensed by humans (e.g. echo
cancellation for cell phones or computer-enhanced medical images).
Although real-world signals can be processed in their analog form,
processing signals digitally provides the advantages of high speed
and accuracy.

Because it's programmable, a DSP can be used in a wide variety of
applications. You can create your own software or use software
provided by ADI and its third parties to design a DSP solution for an
application.

For more detailed information about the advantages of using DSPs to
process real-world signals, please read Part 1 of the article from
Analog Dialogue titled: Why Use DSP? Digital Signal Processing 101-
An Introductory Course in DSP System Design.

back to top

What's Inside a DSP?
A DSP contains these key components:

 Program Memory: Stores the programs the DSP will use to
process data

 Data Memory: Stores the information to be processed
 Compute Engine: Performs the math processing, accessing the

program from the Program Memory and the data from the Data

http://www.analog.com/library/analogDialogue/archives/31-1/DSP.html
http://www.analog.com/Analog_Root/static/technology/dsp/beginnersGuide/introduction.html#top

Memory
 Input/Output: Serves a range of functions to connect to the

outside world

back to top

Recommended Reading
Digital Signal Processing is a complex subject that can overwhelm
even the most experienced DSP professionals. Although we have
provided a general overview, Analog Devices offers the following
resources that contain more extensive information about Digital Signal
Processing:

 The Scientist and Engineer's Guide to Digital Signal Processing
 Analog Dialogue Series: Digital Signal Processing 101- An

Introductory Course in DSP System Design
 Part 1: Why use DSP? DSP Architecture and DSP

Advantages Over Traditional Analog Circuitry
 Part 2: Learn More About Digital Filters
 Part 3: Implement Algorithms on a Hardware Platform
 Part 4: Programming Considerations for Real-Time I/O

 Let's Talk DSP: Commonly Use Worlds and What They Mean

DSP workshops are a very fast and efficient way to learn how to use
Analog Devices DSP chips. The workshops are designed to develop a
strong working knowledge of Analog Devices' DSPs through lecture
and hands-on exercises. For schedule and registration information,
visit the DSP Workshops page.

http://www.analog.com/Analog_Root/static/technology/dsp/beginnersGuide/introduction.html#top
http://www.analog.com/Analog_Root/static/technology/dsp/training/materials/dsp_book_index.html
http://www.analog.com/library/analogDialogue/archives/31-1/DSP.html
http://www.analog.com/library/analogDialogue/archives/31-2/dsp.html
http://www.analog.com/library/analogDialogue/archives/31-3/dsp.html
http://www.analog.com/library/analogDialogue/archives/32-1/dsp.html
http://www.analog.com/Analog_Root/static/technology/dsp/beginnersGuide/DSPSpeak.html
http://www.analog.com/Analog_Root/sitePage/mainSectionResource/0,2131,level4%3D%252D1%26level1%3D205%26level2%3D%252D1%26level3%3D%252D1%26resourceWebLawID%3D68,00.html

How to find signals in noise using estimation
By Trace Baker

Embedded Systems Programming

(09/04/03, 17:00:00 PM EDT)

One of the most challenging aspects of digital signal processing is finding signals

in noise when familiar tools such as averaging and low-pass filtering don't work.

Maximum-likelihood estimation is another technique to extract information from a

sea of noise.

Not only is unwanted noise is the bane of modern living, it can also be a stumbling block for

the embedded systems engineer working with digital signal processing. Figure 1 shows the

graph of a signal that's almost lost in a sea of noise. This article will show you how to write

code to estimate the peak amplitude of a signal despite the noise. This technique is

especially useful in analyzing rare events in which averaging isn't an option but you still

have to determine if a signal's amplitude is above or below an alarm threshold. Although

you could use a low-pass filter, you'd then have two computational steps (filtering followed
by a search for the peak) to prepare the signal before you can measure it.

Figure 1: Example signal in Gaussian noise

The technique we'll use to estimate the parameters of a signal embedded in noise belongs

to a class of statistical methods called maximum-likelihood estimators (MLEs for short, and

also called optimal estimators). MLEs are computationally cheap, intuitive to understand,
and straightforward to program.

By the way, in case you're wondering, the noise in Figure 1 hides a unit-amplitude, half-

cycle sine wave; the signal-to-noise ratio (SNR) is "2.45dB. Figure 1's peak amplitude,
estimated using the techniques presented in this article, is 0.986 with an error of 1.4%.

http://www.embedded.com/
http://www.embedded.com/shared/printableArticle.jhtml?articleID=14400097
javascript:launcher(14400097)

Mathematics

The mathematical formulation of the MLE for the received signal in Figure 1 is:

(1)

where â is the estimate of the amplitude of the transmitted noise-free signal, constant u is

the time integral of the unit-amplitude signal in the absence of noise, and r describes the

received noisy signal as a function of time. In this example, u is determined by computing:

(2)

The integrals in Equations 1 and 2 are evaluated over the time interval [0, T], which is the

duration of the signal. In this case, T is the duration of the half-period of the sine wave. The

sine function takes a single argument that is an angle in radians, so the time interval maps
to an angle by the simple relationship π/T, expressed in units of radians per second.

Of course, not every noisy signal you encounter will be a half-cycle sine wave. For these
other situations, the general forms for Equations 1 and 2 are:

(3)

and:

(4)

where function s is the unit-amplitude transmitted signal, and r is the received signal as

defined for Equation 1. In practice, u can be determined during a calibration run with a

signal of known amplitude. Applying u to signals of unknown received amplitude in

subsequent runs gives the estimated amplitude of the received signal as a fraction of the

calibration standard. The derivation of Equations 3 and 4 is well beyond the scope of this

article; you can explore it further by consulting the references at the end of the article.

If you already have a collection of algorithms for approximating definite integrals, you

should now have enough information to start coding an MLE. But if you read on, you'll learn

some tricks for implementing MLEs efficiently and you'll better understand the trade-offs to
consider when deciding if this technique is appropriate for a particular project.

Implementation

Because this article doesn't focus on numerical-integration methods, the examples that

follow use the extended form of Simpson's rule to approximate integrals, a technique that's

widely used, accurate enough for many applications, easy to understand, and

straightforward to program. The numerical approximation of the integration in Equation 3 by
extended Simpson's rule looks like this:

where h is the equally-spaced sampling interval computed for n samples as:

and:

Figure 2: Using a spreadsheet to calculate MLE coefficients

In many implementations, it's possible to use the distributed property of multiplication and

your knowledge of s(t) to precompute the coefficients and store them in a table rather than

compute each term at each signal acquisition. You can do this part in a spreadsheet, as

shown in Figure 2 for a half-period sinusoidal signal taken as nine samples equally spaced in

time. Using the precomputed coefficients from Figure 2, an entire MLE can be expressed as
a fragment of C code as shown in Listing 1.

Listing 1: A maximum-likelihood estimator in C

double coeff[] = {0.00, 0.128, 0.118, 0.308, 0.167, 0.308, 0.118, 0.128, 0.000;};

double estimate = 0.0;

int samples = (sizeof(coeff) / (sizeof(double));

for (int i = 0; i < samples; i++)

{

 estimate += GetSample() * coeff[i];
}

The code in Listing 1 shows that the MLE method is efficient. But you can do much more

than just tabularize the coefficients needed to approximate the integral. Any multiplicative

constant can be folded in. For example, if a calibration is associated with each sample, as

would be the case if the received signal were extracted from a linear charge-coupled device

(CCD) array rather than from a single detector, the gain of each CCD element can be

applied to make the final line of Listing 1 become:

estimate += GetSample() *
 coeff[i] * gain[i];

Note that if extreme accuracy is important or you're doing scaled-integer math with a

limited number of bits, you need to take time to evaluate how error propagates through the
entire chain of multiplications and the final summation.

To determine whether an MLE is the appropriate solution for your problem, you have to

remember that you're dealing with a signal in random noise. Therefore, you can't determine

the absolute worst-case performance analytically. Instead, you have to be content to work

with the mean and variance of the estimate. With enough math, you can show that the MLE

is a good estimator—the variance of the estimate approaches zero as the number of

samples approaches infinity.

If you need to understand the behavior of an MLE to this level, analytical methods for

determining average performance as a function of the amount of noise contaminating the
signal and the number of samples are available in the references at the end of this article.

Figure 3: Average error estimating the peak of the received signal as a function of
SNR and number of data points

For most applications, though, you can approach questions of accuracy with rules of thumb:

 The more noise you have, the more samples you need to take to get rid of it—no

surprise there. The average error of the estimate decreases as a power of the

number of samples and also decreases with increasing signal-to-noise ratio. Figure 3

illustrates these relationships with data from a simulation experiment for our half-

cycle sine wave example. The variance of the estimate exhibits similar properties.

 The algorithm you choose to approximate the integral also influences accuracy. For

extended Simpson's rule, error decreases approximately with the fourth power of the

number of points.

Design

Regardless of how much accuracy you need for your application, the accuracy you get from

any practical estimation system will be limited by the number of samples you process. Since

system resources limit the number of samples the system can process, tradeoffs are

necessary. The trade space shown graphically in Figure 3 is summarized as the relationships

among design goals for SNR, sampling rate, and accuracy in Table 1.

Table 1: Tradeoffs for maximum-likelihood estimators

Design goal Effects on

design
Figures of merit

Increase estimation

accuracy
Increase

sampling rate
Average error,

variance of error

Handle additional

noise
Increase

sampling rate
Signal-to-noise ratio

Decrease processor

utilization
Decrease

sampling rate
Processor speed,

memory

By now, you've seen that maximum-likelihood estimators have a number of characteristics
that make them desirable for use in embedded systems:

 MLEs use all the information available in the received signal.

 Each data point acquired only needs one multiplication and one addition

 You have your result as soon as you process the last sample

 MLEs have advantages over time averaging and finite-impulse-response filters in not

requiring storage for bins of samples or individual samples.

Even with these benefits, though, MLEs are not a one-size-fits-all solution; any estimation

technique has its limitations. For example, the MLE described in this article requires advance

knowledge of the shape and the phase of the transmitted signal. The signal also has to be a

single-valued function that is differentiable over the domain 0 t T. You also have to be able

to assume the noise is additive, zero-mean, and Gaussian with frequency content higher

than that of the signal you're trying to estimate. Finally, you'll need memory to store the

coefficients if you can't or don't want to compute them on the fly. Fortunately, many real-
world applications fit these limitations.

Here's a summary of the design process for an MLE:

1. Determine the accuracy needed for the quantity you're estimating. This isn't the

required accuracy of the entire system, only that part allocated to the estimation

method to be implemented in software. Other subsystems such as optics and

electronics take their share; as usual, software has to work with what is left over.

2. Determine the amount and type of noise in the input signal.

3. Determine the amount of processing time and memory available for use by the MLE.

Unless you're using a processor dedicated to performing the estimation, you'll have

to work with some fraction of the total processor bandwidth.

4. Pick the number of samples needed to give the required accuracy, considering the

amount of noise expected.

5. Choose an algorithm to approximate the integral. This decision also has an influence

on accuracy, so you may need to do Step 4 again.

6. Decide if you'll use precomputed tables of coefficients or will compute coefficients in

real time with each sample. If you choose the table form, determine the number of

significant digits you need to store for each coefficient to meet your accuracy

requirement.

7. Estimate processor time and memory consumed from your decision in Step 6.

8. If you exceed the resource budget determined in Step 3, you'll have to go back to
Step 1.

If you get to Step 8 without an implementable or practical design, you'll have to renegotiate

with other system stakeholders, asking for a faster processor, more memory, or a relaxation
of the accuracy requirement.

Figure 4: Example of air-pollution monitor

Applications

Figure 4 shows a real-world example of how a maximum-likelihood estimator was used to
estimate the concentration of an atmospheric pollutant to the level of a few parts per billion.

The optical elements of the system included a light source producing a collimated beam at

the wavelength of an absorption peak of the pollutant, a diffraction grating driven by a

software-controlled stepper that produced a transmitted signal modulating wavelength in

time, a cell with transparent end windows to hold a sample of gas, a calibration cell

containing a known concentration of pollutant that could be positioned in the optical path,

and a photodetector. The light beam passing through the sample cell was attenuated in
proportion to the concentration of the pollutant in the sample cell.

The signal-processing elements of the system included software that controlled the stepper

motor that moved the diffraction grating, an equal-interval sampler, an averager, and an

MLE. Constant u (Equation 2) was determined by purging the sample cell with gas free of

the pollutant, inserting the calibration cell, and performing a measurement. Calibration was

checked by inserting the calibration cell and repeating the measurement.

Software controlled both the position of the grating and the timing of sampling, enabling the

wavelength of each sample to be known. Averaging over long intervals (tens of seconds)

removed much of the noise. The MLE estimated the amplitude of the signal without having

to explicitly search for the peak in residual noise. This combination of averaging and an MLE

was dictated by limited processing resources, which in turn limited the number of samples

that could be taken in each half-cycle of the signal. The integration was performed by an

eight-term Newton-Cotes approximation using coefficients derived from Lagrange
interpolation polynomials developed specifically for the input waveform.

Multiple choice

You can develop maximum-likelihood estimators to estimate other signal parameters,

including phase, arrival time, and frequency. Simultaneous estimation of multiple unknown

parameters is possible. Other techniques can also help you estimate parameters other than

zero-sum, white Gaussian noise, and for samples that aren't equally spaced in time. You'll
find these techniques in McDonough and Whalen's book Detection of Signals in Noise.

Trace Baker has developed embedded software for measurement and control since the

days when a 4KB memory card required three power supplies and cost about $2,000. He

specializes in mission-critical systems for regulated markets, and currently works in the

aerospace industry. Contact him at trace@treeline.com.

Further reading

Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Washington, DC:

U.S. Government Printing Office, 1964.

McDonough, R. N. and A. D. Whalen, Detection of Signals in Noise (2nd edition), San Diego:
Academic Press, 1995.

Schaeffer, R. L. and J. T. McClave, Probability and Statistics for Engineers, Belmont, CA:
Duxbury, 1995.

mailto:trace@treeline.com

NDT.net July 2003, Vol. 8 No.07

Noisy signal processing in real time DSP systems
E. Kazanavicius, A. Mikuckas, I. Mikuckiene, V.Kazanavicius

Digital Signal Processing Laboratory, Computer Department, Kaunas University of Technology

Studentu 50-214c, 3031 Kaunas, LITHUANIA, E-mail: ekaza @dsplab.ktu.lt

Published in Ultragarsas Journal 2003 Vol 46 No1

Introduction

Modern ultrasonic and radar
measurement systems are
widely used in the field of
non-destructive testing for a
long time. The limitation of a
currently available ultrasonic
instruments hardly lies on
the property of hardware but
it may lie on the lack of
sufficient signal processing
techniques [1]. At present,
the ultrasonic A-scan type
instruments are most
commonly used. It is
believed that the received A-
scan signal may carry a lot
of information on material
properties and defects, but
information appears in
various guises of noise,
which is to be deciphered
completely. A lot of research has been done on ultrasonic signal
processing and still now is going on in search for more reliable
and versatile signal processing techniques [2-6]. Generally, the
flaw signals measured in ultrasonic NDT include the effects of
the measurement system and are corrupted by different kind of

Fig 1: Ultrasonic NDT system.

http://www.ndt.net/index.html
http://www.ndt.net/v08n07.htm
http://www.ktu.lt/ultra/ultra2.asp?file=journal/ultra_journal

noise. The highly complex interaction between the defect
geometry and the back-scattered ultrasonic wave inside the test
piece may not be assumed as a linear process. So, the signal
processing techniques which require apriory knowledge of noise
statistics, are subject to fail in many situations. Therefore the
approach of signal processing should be involving the noisy
signal itself in constructing the signal processing method.

Signal processing in ultrasonic NDT
systems

Let us analyze a real time system in which a transmitter and a
receiver are located at predetermined points. Several M-
sequences (usually the Barker code), modulated by ultrasonic
wave are used as the transmitted signal and receiver receives
signals reflected from the target. Such a system is depicted in
Fig. 1.

This system measures the thickness of moving object A. The
reference signal xref consisting of a certain coded sequence is
emitted by the ultrasonic transmitter at the time moment t0. The
propagating signal partially reflects from the front side of object
A:

(1)

The other part of the emitted reference signal xref reflects from
the rear side of object A:

(2)

where: k1 and k2 are the coefficients depending on a distance to

the object, environment and object properties, t1 and t2 are the
delay times directly proportional to the distance d and the
thickness of object A:

(3)

(4)

Finally in the receiver we get the signal y:

(5)

The task of signal processing is to determine the time instances

t1 and t2. Then values of control signals are calculated and
transmitted to actuators. The signal processing time is restricted
by properties of a technological process and the velocity of the

object A. For determination of the time instances t1 and t2
usually it is used principle of obtaining the impulse response by a
correlation process. Let’s consider xref to be the transmitted
sequence, y(t) to be the received sequence and h(t) to be the
impulse response of the composite system, which includes the
test piece, the transceiver system and their associated
electronics. The scattered ultrasound that is picked up by the
receiver and the additive system noise n(t) constitute the
received signal y(t). The signal of the output of the correlation
filter can be represented by

(6)

If peaks corresponding to reflections from the targets were
clearly identified in the cross correlation function (CCF), it would

be easy to determine the time instances t1 and t2. In practice,
however, it quite difficult to identify them because of suspicious
peaks in the CCF due to a noise from the surrounding medium
and it is essential to cancel out effects of noise. In order to
reduce the effects of a noise during transmission and reception
some measures have to be taken.

Band modification by moving average

Data processing is performed on both of the sampled received
signals and the original M-sequence and the sampling frequency
is such that there are j samples per unit pulse of the M-
sequence. So, the expected peak on the CCF is supposed to
consist of 2j samples. In order to minimize spurious peaks,
widths of which are less than 2j samples, the sampled data are
smoothed by performing the moving average of the data
sequence:

(7)

(8)

This is equivalent to application of the Hanning spectral window.
This method considerably minimizes the noise peaks of
comparatively small width while keeping the expected peaks
intact.

Averaging

The system emits the reference signal xref periodically

(9)

where N is the period of the reference signal. If the position of
the object A during l periods changes a little, it is possible to
average input signal l times:

(10)

The noise level is reduced times. This is effective, but time
wasting method and is not used in the case of signal processing
time restrictions in real time systems. This method does not
allow eliminating peaks caused by surrounding environment.

Noise cancellation by subtraction

Some coherent peaks, additive to the expected peaks, appear
on the CCF, which are confusing in regard to the clear distinction
of a target. This is due to the surrounding structure or due to the
effect of limitations of the measuring system. These clutter peaks
appear irrespective of presence of any target. To perform the
subtraction, first of all the data are collected from the test object
without presence of any the target. Another data are taken with
the presence of target. Coherent peaks are cancelled by taking
the difference between the CCF of second data and that of the
first data. This helps distinguishing the peaks corresponding to
the reflections from the newly developed targets by removing the
coherent noise of the system.

Inverse filtering

Passing the signal through an inverse filter can significantly
reduce a random and clutter type noise. A major part of the long
CCF is to be assumed as a noise except the portion
corresponding to the direct signal and the signal reflected from
the target. The inverse filtering operation [7-9] of a signal is
described as:

(11)

where is the output of the filter and P is prediction or the
model order. The inverse filter is designed calculating the
coefficients {ak} based on noisy data. Coefficients {ak} are
obtained by solving the equation [10]:

(12)

where R[i] is the autocorrelation function defined by:

(13)

This autocorrelation function is constructed with N samples of
data from a suitable portion of the received signal, which
presumably contains no expected peak. Such a filter is depicted
in Fig. 2

Fig 2: Inverse filter.

This filter attempts to remove the predictable part of the signal

and produce an output , which is completely unpredictable to
the filter.

Wavelet transform based noise reduction

During the last time the wavelets have become a popular de-
noising (or noise reduction) tool [11]. Donoho and Johnston [12]
showed that this method has statistical optimality properties.
Many algorithms define a criterion to divide wavelet transform
coefficients into two groups. The first group contains the
coefficients dominated by a noise, while other coefficients are
rather clean. These algorithms eliminate all wavelet coefficients
below a certain threshold, because these coefficients are
dominated by a noise.

Let’s consider the following model of the received discrete noisy
signal

(14)

or in a vector notation:

(15)

To reconstruct the original data, a wavelet representation is
used. We use simple non-redundant orthogonal, discrete wavelet
transforms. An orthogonal matrix W can be used to represent
this operation. We consider the following transform:

(16)

These transforms localize the most important spatial and
frequencies characteristics of a regular signal in a limited number
of wavelet coefficients. On the other hand, it is easy to prove that
an orthogonal transform of a stationary, white noise results in a
stationary white noise. This means that the expected noise
energy is the same in all coefficients. If this energy is not to
large, the noise has a relatively small influence on the important
large regular signal coefficients. These observations suggest
replacing the small coefficients by zero, because they are
dominated by noise and carry only a small amount of
information.

The thresholding operations can be represented as

(17)

where

(18)

There are known two threshold methods – hard threshold and
soft threshold (or shrinking function) [13-15].

In the case of the hard threshold the entries of the matrix D are

(19)

In the case of soft threshold the entries of the matrix D are

(20)

These threshold functions are shown in Fig. 3. A wavelet

coefficient between - and is set to zero, while others have
the same value in the case of the hard threshold, or are shrunk
in an absolute value in the case of the soft threshold.

Fig 3: Hard thresholding (a) and soft

thresholding (b) functions.

A natural question arising from this procedure is how to chose

the threshold. If y is the result of applying threshold procedure

to the wavelet coefficients of signal y, and = y-f is the noise of
this result, then an often used criterion to measure the quality of

this result is its signal to noise ratio (SNR()):

(21)

An optimal choice of should maximize SNR(). This is
equivalent to minimizing the mean squared error R:

(22)

Because the wavelet transform is orthogonal, we can also
compute R from the wavelet coefficients as:

(23)

 = W is the noise after operation in the wavelet domain.

However, because f is unknown, the function R is not

computable and hence it cannot be used to find optimal . For
automatic spline smoothing it was suggested to adapt general
cross validation (GCV). Our aim is to minimize error function
based on an unknown exact signal. We therefore try to find a
good compromise between a goodness of fit and smoothness.
We assume that the original signal is regular to some extend,
which means that the value fi can be approximated by an linear

GCV combination of its neighbors. So, by considering yi a
combination of fi, not depending on fi itself, we can eliminate the
noise in this particular component. Since we replace it by a

weighted average of its neighbors, the noise in these
components is smoothed, and so we end up with a relatively
clean, noise-independent value. Applied to the wavelet
procedure this GCV should be a function of a threshold value
using only known data and having approximately the same

minimum as the residual function R().

We have a definition of general cross validation:

(24)

where .

Note that if ij, then dij=0. For i=j we have

(25)

Thus, if Tr(D') is the trace of D',

(26)

The results of applying the threshold procedure on the reflected
signal are depicted in Fig. 4. In this case only a fragment of the
Barker code is used for formatting M-sequence.

a

b

c

Fig 4: The reflected signal: a - without applying de-

noising procedure, b - after applying hard thresold

procedure, c - after applying soft threshold procedure.

Wavelet transform based signal processing
method for ultrasonic NDT system

In order to reduce computations, the reference signal xref and the

reflected signal y (signal y after applying thresholding
procedure) are transformed:

(27)

After applying this transform we get digital signals and with
logical values "0" and "1". This transform is possible because the
most important information is the pulse widths of M-sequence.
Results of applying procedure (27) are shown in Fig. 5

Fig 5: The transformed reflected signal: a - the reflected

signal without noise, b - the reflected noisy signal after

applying hard threshold procedure, c - the reflected noisy

signal after applying sof threshold procedure.

The soft threshold procedure allows achieving a better visual
quality, than the hard threshold procedure as shown in Fig.4.
But, when the noise level is high, applying the soft thresholding
procedure more distorts pulse widths of the transformed signal
as shown in Fig.5.

The results of these transforms depend on the threshold 1
value, which optimal value varies in accordance to the noise

level . When the threshold is low, an additional pulses emerge
in the transformed signal , as shown in Fig. 5b. When the

threshold value is high, the pulse widths of the transformed
signal are shrinking and pulses may be distorted as shown in

Fig. 5c. The optimal threshold 1 value was defined by
computing maximum value of the correlation function:

(28)

at different threshold 1 values.

The best results were achieved when 1=1.4, where is the
threshold value defined by computing GCV function. Note that
GCV function computation in this case does not require any
floating-point operation and may be computed by a hardware.
These computations may be simplified in the case when a fixed
M-sequence is used.

Such a procedure may be used for recovering a distance to the
object from noisy data. It possesses three steps:

1. apply the interval adapted pyramidal algorithm of Cohen, Daubechies, Jawerth and Vial

[11] to the measured data, obtaining empirical wavelet coefficients i

2. apply the soft threshold nonlinearity coordinatwise to the

empirical wavelet coefficients with the specially chosen threshold ;

3. invert the pyramid filtering recovering ;

4. apply the transform (xx) to the reference signal xref and de-noised data y;
5. detect the argument of correlation function maximum value.

For a fast wavelet transform we need 2N2F flops, where F is the
number of filter coefficients. For F=4 , we have 16N flops. To

reconstruct the signal after operation with the optimal threshold
we need 16N flops.

Computation of GCV() can be performed completely in the

wavelet domain. Because GCV() is an approximation itself it is
not useful to compute its minimum very precisely. Moreover, in

most cases this is not necessary to the curve of R() in the
neighborhood of its minimum. A relative accuracy of 10-3 is

enough. Using a classic minimization procedure (such as
Fibonacci) this requires approximately 15 function evaluations.
The denominator N-Tr(D')counts the number of coefficients that
are set to zero. This does not require any floating-point
operation. Computation of the nominator can be done with 2N
floating point operations. So 15 function evaluations lead to
some 30N floating-point operations.

Computation of the signal can be done with N floating point
operations.

Computation of the correlation function does not require any
floating-point operation.

So execution of the suggested signal processing algorithm leads
to 63N operations. Execution of a classical signal processing
algorithm leads to (L+2P)N operations, where N is the number of
samples, L is the length of M-sequence, P is the model order of
the inverse filter. The suggested algorithm requires less floating-
point operations, when
(L+2P)>63.

Conclusions

Generally the flaw signals measured in ultrasonic NDT systems
are spoiled by different kind of a noise. Therefore, the approach
of signal processing should be involving the noisy signal itself in
constructing the signal processing method. The noise in such
systems is cancelled by band modification using moving
average, signal averaging, inverse filtering and noise
cancellation by subtraction. These methods are time consuming
and due to signal processing time restrictions not always may be
used in real time systems. During the last time the wavelets have
become a popular de-noising (or noise reduction) tool and this
method has statistical optimality properties. New data processing
method based on the wavelet transform for real time systems is
suggested. It is shown that the hard threshold algorithm is
preferred to the soft threshold in such systems. Execution of this

method leads to less amount of floating point operations than
classical signal processing methods.

References

1. Sinclair A. An analysis of ultrasonic frequency response for flaw detection: a technique review.
Materials evaluation. 1989. Vol. 43. P. 870-883.

2. Fomitchev M. I. et. al. Ultrasonic pulse shaping with optimal lag filters. Int. J. Imaging syst.
technol. (USA). 1999. Vol. 10. P. 397-403.

3. Sallard J. et. al. Use of a priori information for the deconvolution of ultrasonic signals. Review of
progress in quantitative nondestructive evaluation. 1998. P. 735-742.

4. Crawford D. C. et. al. Compensation for the signal processing characteristics of ultrasound B-
mode scanners in adaptive speckle reduction. Ultrasound Med. Biol. (UK). 1993. Vol. 19. P. 469-
485.

5. Andrade Lima E. et. al. Image processing techniques to remove depth bias effects in magnetic
source images of deep cracks. Review of progress in quantitative nondestructive evaluation.
Plenum press. New York. 1997. Vol.1. P. 797-803.

6. Jianzhong C. et. al. Noise analysis of digital ultrasonic system and elimination of pulse noise. Int.
J. Pressure vessels piping. 1998. Vol.75. P. 887-890.

7. Bengt M. et. al. Weighted least squares pulse shaping filters with application to ultrasonic
signals. IEEE Trans. UFFC. 1989. Vol. 36. P. 109-113.

8. Venkantraman S. et. al. Combining pulse compression and adaptive drive signal design to
inverse filter the transducer system response and improve resolution in medical ultrasound.
Med. Biomed. eng & comp. 1996. P/318-320.

9. Izguierdo M. A. G. et. al. Multipattern adaptive inverse filter for real time deconvolution of
ultrasonic signals in scattering media. Sensors and actuators. 1999. Vol. 76. P. 26-31.

10. Lim J. S. et al. Advanced topics in signal processing. Prentice Hall. Tokyo. 1988. P. 1-55.
11. Daubechies.Ten Lectures on Wavelets. CBMS-NSF Regional Conf. Series in Appl. Math., Vol 61.

Society for Industrial and Applied Mathematics, Philadelphia, PA, 1992.
12. Donoho D. L. and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage.

Journal of American Statistical Association, 1995, 1200-1224.
13. Mallat S. A theory for multiresolution signal decomposition: The wavelet representation.IEEE

Transactions on Pattern Analysis and Machine Intelligence, 11, 1998, 674-693.
14. Donoho D. L.and I. M. Johnstone.Minimax estimation via Wavelet Shrinkage. The Annals of

Statistics, 26, 1998, 879-921.
15. Neumann M. H. and Von Sachs R.Wavelet thresholding: beyond the Gaussian I.I.D. situation. In

A. Antoniadis and G. Openheim Wavelets and Statistics, New York: Springer-Verlag 1995, 302-
329.

