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What is a DSP? 
Digital Signal Processors (DSPs) take real-world signals like voice, 
audio, video, temperature, pressure, or position that have been 
digitized and then mathematically manipulate them. A DSP is 
designed for performing mathematical functions like "add", "subtract", 
"multiply" and "divide" very quickly. 

Signals need to be processed so that the information that they contain 
can be displayed, analyzed, or converted to another type of signal that 
may be of use. In the real-world, analog products detect signals such 
as sound, light, temperature or pressure and manipulate them. 
Converters such as an Analog-to-Digital converter then take the real-
world signal and turn it into the digital format of 1's and 0's. From 
here, the DSP takes over by capturing the digitized information and 
processing it. It then feeds the digitized information back for use in the 
real world. It does this in one of two ways, either digitally or in an 
analog format by going through a Digital-to-Analog converter. All of 
this occurs at very high speeds. 

To illustrate this concept, the diagram below shows how a DSP is 
used in an MP3 audio player. During the recording phase, analog 
audio is input through a receiver or other source. This analog signal is 
then converted to a digital signal by an analog-to-digital converter and 
passed to the DSP. The DSP performs the MP3 encoding and saves 
the file to memory. During the playback phase, the file is taken from 
memory, decoded by the DSP and then converted back to an analog 
signal through the digital-to-analog converter so it can be output 
through the speaker system. In a more complex example, the DSP 
would perform other functions such as volume control, equalization 
and user interface. 



 

A DSP's information can be used by a computer to control such things 
as security, telephone, home theater systems, and video 
compression. Signals may be compressed so that they can be 
transmitted quickly and more efficiently from one place to another 
(e.g. teleconferencing can transmit speech and video via telephone 
lines). Signals may also be enhanced or manipulated to improve their 
quality or provide information that is not sensed by humans (e.g. echo 
cancellation for cell phones or computer-enhanced medical images). 
Although real-world signals can be processed in their analog form, 
processing signals digitally provides the advantages of high speed 
and accuracy. 

Because it's programmable, a DSP can be used in a wide variety of 
applications. You can create your own software or use software 
provided by ADI and its third parties to design a DSP solution for an 
application.  

For more detailed information about the advantages of using DSPs to 
process real-world signals, please read Part 1 of the article from 
Analog Dialogue titled: Why Use DSP? Digital Signal Processing 101- 
An Introductory Course in DSP System Design. 
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What's Inside a DSP? 
A DSP contains these key components: 

 Program Memory: Stores the programs the DSP will use to 
process data  

 Data Memory: Stores the information to be processed  
 Compute Engine: Performs the math processing, accessing the 

program from the Program Memory and the data from the Data 

http://www.analog.com/library/analogDialogue/archives/31-1/DSP.html
http://www.analog.com/Analog_Root/static/technology/dsp/beginnersGuide/introduction.html#top


Memory  
 Input/Output: Serves a range of functions to connect to the 

outside world  
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Recommended Reading 
Digital Signal Processing is a complex subject that can overwhelm 
even the most experienced DSP professionals. Although we have 
provided a general overview, Analog Devices offers the following 
resources that contain more extensive information about Digital Signal 
Processing: 

 The Scientist and Engineer's Guide to Digital Signal Processing  
 Analog Dialogue Series: Digital Signal Processing 101- An 

Introductory Course in DSP System Design  
 Part 1: Why use DSP? DSP Architecture and DSP 

Advantages Over Traditional Analog Circuitry  
 Part 2: Learn More About Digital Filters  
 Part 3: Implement Algorithms on a Hardware Platform  
 Part 4: Programming Considerations for Real-Time I/O  

 Let's Talk DSP: Commonly Use Worlds and What They Mean  

DSP workshops are a very fast and efficient way to learn how to use 
Analog Devices DSP chips. The workshops are designed to develop a 
strong working knowledge of Analog Devices' DSPs through lecture 
and hands-on exercises. For schedule and registration information, 
visit the DSP Workshops page. 
 

 

 

http://www.analog.com/Analog_Root/static/technology/dsp/beginnersGuide/introduction.html#top
http://www.analog.com/Analog_Root/static/technology/dsp/training/materials/dsp_book_index.html
http://www.analog.com/library/analogDialogue/archives/31-1/DSP.html
http://www.analog.com/library/analogDialogue/archives/31-2/dsp.html
http://www.analog.com/library/analogDialogue/archives/31-3/dsp.html
http://www.analog.com/library/analogDialogue/archives/32-1/dsp.html
http://www.analog.com/Analog_Root/static/technology/dsp/beginnersGuide/DSPSpeak.html
http://www.analog.com/Analog_Root/sitePage/mainSectionResource/0,2131,level4%3D%252D1%26level1%3D205%26level2%3D%252D1%26level3%3D%252D1%26resourceWebLawID%3D68,00.html
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One of the most challenging aspects of digital signal processing is finding signals 

in noise when familiar tools such as averaging and low-pass filtering don't work. 

Maximum-likelihood estimation is another technique to extract information from a 

sea of noise.  

Not only is unwanted noise is the bane of modern living, it can also be a stumbling block for 

the embedded systems engineer working with digital signal processing. Figure 1 shows the 

graph of a signal that's almost lost in a sea of noise. This article will show you how to write 

code to estimate the peak amplitude of a signal despite the noise. This technique is 

especially useful in analyzing rare events in which averaging isn't an option but you still 

have to determine if a signal's amplitude is above or below an alarm threshold. Although 

you could use a low-pass filter, you'd then have two computational steps (filtering followed 
by a search for the peak) to prepare the signal before you can measure it.  

 
Figure 1: Example signal in Gaussian noise  

The technique we'll use to estimate the parameters of a signal embedded in noise belongs 

to a class of statistical methods called maximum-likelihood estimators (MLEs for short, and 

also called optimal estimators). MLEs are computationally cheap, intuitive to understand, 
and straightforward to program.  

By the way, in case you're wondering, the noise in Figure 1 hides a unit-amplitude, half-

cycle sine wave; the signal-to-noise ratio (SNR) is "2.45dB. Figure 1's peak amplitude, 
estimated using the techniques presented in this article, is 0.986 with an error of 1.4%.  

http://www.embedded.com/
http://www.embedded.com/shared/printableArticle.jhtml?articleID=14400097
javascript:launcher(14400097)


Mathematics 

The mathematical formulation of the MLE for the received signal in Figure 1 is:  

(1)  

where â is the estimate of the amplitude of the transmitted noise-free signal, constant u is 

the time integral of the unit-amplitude signal in the absence of noise, and r describes the 

received noisy signal as a function of time. In this example, u is determined by computing:  

(2)  

The integrals in Equations 1 and 2 are evaluated over the time interval [0, T], which is the 

duration of the signal. In this case, T is the duration of the half-period of the sine wave. The 

sine function takes a single argument that is an angle in radians, so the time interval maps 
to an angle by the simple relationship π/T, expressed in units of radians per second.  

Of course, not every noisy signal you encounter will be a half-cycle sine wave. For these 
other situations, the general forms for Equations 1 and 2 are:  

(3)  

and:  

(4)  

where function s is the unit-amplitude transmitted signal, and r is the received signal as 

defined for Equation 1. In practice, u can be determined during a calibration run with a 

signal of known amplitude. Applying u to signals of unknown received amplitude in 

subsequent runs gives the estimated amplitude of the received signal as a fraction of the 

calibration standard. The derivation of Equations 3 and 4 is well beyond the scope of this 

article; you can explore it further by consulting the references at the end of the article.  

If you already have a collection of algorithms for approximating definite integrals, you 

should now have enough information to start coding an MLE. But if you read on, you'll learn 

some tricks for implementing MLEs efficiently and you'll better understand the trade-offs to 
consider when deciding if this technique is appropriate for a particular project.  

Implementation 

Because this article doesn't focus on numerical-integration methods, the examples that 

follow use the extended form of Simpson's rule to approximate integrals, a technique that's 

widely used, accurate enough for many applications, easy to understand, and 

straightforward to program. The numerical approximation of the integration in Equation 3 by 
extended Simpson's rule looks like this:  



 

where h is the equally-spaced sampling interval computed for n samples as:  

 

and:  

 

 
Figure 2: Using a spreadsheet to calculate MLE coefficients  

In many implementations, it's possible to use the distributed property of multiplication and 

your knowledge of s(t) to precompute the coefficients and store them in a table rather than 

compute each term at each signal acquisition. You can do this part in a spreadsheet, as 

shown in Figure 2 for a half-period sinusoidal signal taken as nine samples equally spaced in 

time. Using the precomputed coefficients from Figure 2, an entire MLE can be expressed as 
a fragment of C code as shown in Listing 1.  

Listing 1: A maximum-likelihood estimator in C  



double coeff[] = {0.00, 0.128, 0.118, 0.308, 0.167, 0.308, 0.118, 0.128, 0.000;}; 

double estimate = 0.0; 

int samples = (sizeof(coeff) / (sizeof(double));  

for (int i = 0; i < samples; i++) 

{ 

  estimate += GetSample() * coeff[i]; 
}  

The code in Listing 1 shows that the MLE method is efficient. But you can do much more 

than just tabularize the coefficients needed to approximate the integral. Any multiplicative 

constant can be folded in. For example, if a calibration is associated with each sample, as 

would be the case if the received signal were extracted from a linear charge-coupled device 

(CCD) array rather than from a single detector, the gain of each CCD element can be 

applied to make the final line of Listing 1 become:  

estimate += GetSample() *  
   coeff[i] * gain[i];  

Note that if extreme accuracy is important or you're doing scaled-integer math with a 

limited number of bits, you need to take time to evaluate how error propagates through the 
entire chain of multiplications and the final summation.  

To determine whether an MLE is the appropriate solution for your problem, you have to 

remember that you're dealing with a signal in random noise. Therefore, you can't determine 

the absolute worst-case performance analytically. Instead, you have to be content to work 

with the mean and variance of the estimate. With enough math, you can show that the MLE 

is a good estimator—the variance of the estimate approaches zero as the number of 

samples approaches infinity.  

If you need to understand the behavior of an MLE to this level, analytical methods for 

determining average performance as a function of the amount of noise contaminating the 
signal and the number of samples are available in the references at the end of this article.  



 
Figure 3: Average error estimating the peak of the received signal as a function of 
SNR and number of data points  

For most applications, though, you can approach questions of accuracy with rules of thumb:  

 The more noise you have, the more samples you need to take to get rid of it—no 

surprise there. The average error of the estimate decreases as a power of the 

number of samples and also decreases with increasing signal-to-noise ratio. Figure 3 

illustrates these relationships with data from a simulation experiment for our half-

cycle sine wave example. The variance of the estimate exhibits similar properties.  

 The algorithm you choose to approximate the integral also influences accuracy. For 

extended Simpson's rule, error decreases approximately with the fourth power of the 

number of points.  

Design 

Regardless of how much accuracy you need for your application, the accuracy you get from 

any practical estimation system will be limited by the number of samples you process. Since 

system resources limit the number of samples the system can process, tradeoffs are 

necessary. The trade space shown graphically in Figure 3 is summarized as the relationships 

among design goals for SNR, sampling rate, and accuracy in Table 1.  

Table 1: Tradeoffs for maximum-likelihood estimators  

Design goal Effects on 

design 
Figures of merit 

Increase estimation 

accuracy 
Increase 

sampling rate 
Average error, 

variance of error 



Handle additional 

noise  
Increase 

sampling rate 
Signal-to-noise ratio 

Decrease processor 

utilization 
Decrease 

sampling rate  
Processor speed, 

memory 

By now, you've seen that maximum-likelihood estimators have a number of characteristics 
that make them desirable for use in embedded systems:  

 MLEs use all the information available in the received signal.  

 Each data point acquired only needs one multiplication and one addition  

 You have your result as soon as you process the last sample  

 MLEs have advantages over time averaging and finite-impulse-response filters in not 

requiring storage for bins of samples or individual samples.  

Even with these benefits, though, MLEs are not a one-size-fits-all solution; any estimation 

technique has its limitations. For example, the MLE described in this article requires advance 

knowledge of the shape and the phase of the transmitted signal. The signal also has to be a 

single-valued function that is differentiable over the domain 0 t T. You also have to be able 

to assume the noise is additive, zero-mean, and Gaussian with frequency content higher 

than that of the signal you're trying to estimate. Finally, you'll need memory to store the 

coefficients if you can't or don't want to compute them on the fly. Fortunately, many real-
world applications fit these limitations.  

Here's a summary of the design process for an MLE:  

1. Determine the accuracy needed for the quantity you're estimating. This isn't the 

required accuracy of the entire system, only that part allocated to the estimation 

method to be implemented in software. Other subsystems such as optics and 

electronics take their share; as usual, software has to work with what is left over.  

2. Determine the amount and type of noise in the input signal.  

3. Determine the amount of processing time and memory available for use by the MLE. 

Unless you're using a processor dedicated to performing the estimation, you'll have 

to work with some fraction of the total processor bandwidth.  

4. Pick the number of samples needed to give the required accuracy, considering the 

amount of noise expected.  

5. Choose an algorithm to approximate the integral. This decision also has an influence 

on accuracy, so you may need to do Step 4 again.  

6. Decide if you'll use precomputed tables of coefficients or will compute coefficients in 

real time with each sample. If you choose the table form, determine the number of 

significant digits you need to store for each coefficient to meet your accuracy 

requirement.  

7. Estimate processor time and memory consumed from your decision in Step 6.  

8. If you exceed the resource budget determined in Step 3, you'll have to go back to 
Step 1.  

If you get to Step 8 without an implementable or practical design, you'll have to renegotiate 

with other system stakeholders, asking for a faster processor, more memory, or a relaxation 
of the accuracy requirement.  



 
Figure 4: Example of air-pollution monitor  

Applications 

Figure 4 shows a real-world example of how a maximum-likelihood estimator was used to 
estimate the concentration of an atmospheric pollutant to the level of a few parts per billion.  

The optical elements of the system included a light source producing a collimated beam at 

the wavelength of an absorption peak of the pollutant, a diffraction grating driven by a 

software-controlled stepper that produced a transmitted signal modulating wavelength in 

time, a cell with transparent end windows to hold a sample of gas, a calibration cell 

containing a known concentration of pollutant that could be positioned in the optical path, 

and a photodetector. The light beam passing through the sample cell was attenuated in 
proportion to the concentration of the pollutant in the sample cell.  

The signal-processing elements of the system included software that controlled the stepper 

motor that moved the diffraction grating, an equal-interval sampler, an averager, and an 

MLE. Constant u (Equation 2) was determined by purging the sample cell with gas free of 

the pollutant, inserting the calibration cell, and performing a measurement. Calibration was 

checked by inserting the calibration cell and repeating the measurement.  

Software controlled both the position of the grating and the timing of sampling, enabling the 

wavelength of each sample to be known. Averaging over long intervals (tens of seconds) 

removed much of the noise. The MLE estimated the amplitude of the signal without having 

to explicitly search for the peak in residual noise. This combination of averaging and an MLE 

was dictated by limited processing resources, which in turn limited the number of samples 

that could be taken in each half-cycle of the signal. The integration was performed by an 

eight-term Newton-Cotes approximation using coefficients derived from Lagrange 
interpolation polynomials developed specifically for the input waveform.  

Multiple choice 

You can develop maximum-likelihood estimators to estimate other signal parameters, 



including phase, arrival time, and frequency. Simultaneous estimation of multiple unknown 

parameters is possible. Other techniques can also help you estimate parameters other than 

zero-sum, white Gaussian noise, and for samples that aren't equally spaced in time. You'll 
find these techniques in McDonough and Whalen's book Detection of Signals in Noise.  

Trace Baker has developed embedded software for measurement and control since the 

days when a 4KB memory card required three power supplies and cost about $2,000. He 

specializes in mission-critical systems for regulated markets, and currently works in the 

aerospace industry. Contact him at trace@treeline.com.  
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Introduction 

Modern ultrasonic and radar 
measurement systems are 
widely used in the field of 
non-destructive testing for a 
long time. The limitation of a 
currently available ultrasonic 
instruments hardly lies on 
the property of hardware but 
it may lie on the lack of 
sufficient signal processing 
techniques [1]. At present, 
the ultrasonic A-scan type 
instruments are most 
commonly used. It is 
believed that the received A-
scan signal may carry a lot 
of information on material 
properties and defects, but 
information appears in 
various guises of noise, 
which is to be deciphered 
completely. A lot of research has been done on ultrasonic signal 
processing and still now is going on in search for more reliable 
and versatile signal processing techniques [2-6]. Generally, the 
flaw signals measured in ultrasonic NDT include the effects of 
the measurement system and are corrupted by different kind of 

Fig 1: Ultrasonic NDT system.  

http://www.ndt.net/index.html
http://www.ndt.net/v08n07.htm
http://www.ktu.lt/ultra/ultra2.asp?file=journal/ultra_journal


noise. The highly complex interaction between the defect 
geometry and the back-scattered ultrasonic wave inside the test 
piece may not be assumed as a linear process. So, the signal 
processing techniques which require apriory knowledge of noise 
statistics, are subject to fail in many situations. Therefore the 
approach of signal processing should be involving the noisy 
signal itself in constructing the signal processing method. 

Signal processing in ultrasonic NDT 
systems 

Let us analyze a real time system in which a transmitter and a 
receiver are located at predetermined points. Several M-
sequences (usually the Barker code), modulated by ultrasonic 
wave are used as the transmitted signal and receiver receives 
signals reflected from the target. Such a system is depicted in 
Fig. 1. 

This system measures the thickness of moving object A. The 
reference signal xref consisting of a certain coded sequence is 
emitted by the ultrasonic transmitter at the time moment t0. The 
propagating signal partially reflects from the front side of object 
A: 

 

(1)  

The other part of the emitted reference signal xref reflects from 
the rear side of object A: 

 

(2)  

where: k1 and k2 are the coefficients depending on a distance to 

the object, environment and object properties, t1 and t2 are the 
delay times directly proportional to the distance d and the 
thickness of object A: 



 

(3)  

 

(4)  

Finally in the receiver we get the signal y: 

 

(5)  

The task of signal processing is to determine the time instances 

t1 and t2. Then values of control signals are calculated and 
transmitted to actuators. The signal processing time is restricted 
by properties of a technological process and the velocity of the 

object A. For determination of the time instances t1 and t2 
usually it is used principle of obtaining the impulse response by a 
correlation process. Let’s consider xref to be the transmitted 
sequence, y(t) to be the received sequence and h(t) to be the 
impulse response of the composite system, which includes the 
test piece, the transceiver system and their associated 
electronics. The scattered ultrasound that is picked up by the 
receiver and the additive system noise n(t) constitute the 
received signal y(t). The signal of the output of the correlation 
filter can be represented by 

 

(6)  

If peaks corresponding to reflections from the targets were 
clearly identified in the cross correlation function (CCF), it would 

be easy to determine the time instances t1 and t2. In practice, 
however, it quite difficult to identify them because of suspicious 
peaks in the CCF due to a noise from the surrounding medium 
and it is essential to cancel out effects of noise. In order to 
reduce the effects of a noise during transmission and reception 
some measures have to be taken. 

Band modification by moving average  



Data processing is performed on both of the sampled received 
signals and the original M-sequence and the sampling frequency 
is such that there are j samples per unit pulse of the M-
sequence. So, the expected peak on the CCF is supposed to 
consist of 2j samples. In order to minimize spurious peaks, 
widths of which are less than 2j samples, the sampled data are 
smoothed by performing the moving average of the data 
sequence: 

 

(7)  

 

(8)  

This is equivalent to application of the Hanning spectral window. 
This method considerably minimizes the noise peaks of 
comparatively small width while keeping the expected peaks 
intact. 

Averaging  

The system emits the reference signal xref periodically 

 

(9)  

where N is the period of the reference signal. If the position of 
the object A during l periods changes a little, it is possible to 
average input signal l times: 

 

(10)  

The noise level is reduced times. This is effective, but time 
wasting method and is not used in the case of signal processing 
time restrictions in real time systems. This method does not 
allow eliminating peaks caused by surrounding environment. 



Noise cancellation by subtraction 

Some coherent peaks, additive to the expected peaks, appear 
on the CCF, which are confusing in regard to the clear distinction 
of a target. This is due to the surrounding structure or due to the 
effect of limitations of the measuring system. These clutter peaks 
appear irrespective of presence of any target. To perform the 
subtraction, first of all the data are collected from the test object 
without presence of any the target. Another data are taken with 
the presence of target. Coherent peaks are cancelled by taking 
the difference between the CCF of second data and that of the 
first data. This helps distinguishing the peaks corresponding to 
the reflections from the newly developed targets by removing the 
coherent noise of the system. 

Inverse filtering 

Passing the signal through an inverse filter can significantly 
reduce a random and clutter type noise. A major part of the long 
CCF is to be assumed as a noise except the portion 
corresponding to the direct signal and the signal reflected from 
the target. The inverse filtering operation [7-9] of a signal is 
described as: 

 

(11)  

where is the output of the filter and P is prediction or the 
model order. The inverse filter is designed calculating the 
coefficients {ak} based on noisy data. Coefficients {ak} are 
obtained by solving the equation [10]: 

 

(12)  



where R[i] is the autocorrelation function defined by: 

 

(13)  

This autocorrelation function is constructed with N samples of 
data from a suitable portion of the received signal, which 
presumably contains no expected peak. Such a filter is depicted 
in Fig. 2 

Fig 2: Inverse filter.  

This filter attempts to remove the predictable part of the signal 

and produce an output , which is completely unpredictable to 
the filter. 

Wavelet transform based noise reduction  

During the last time the wavelets have become a popular de-
noising (or noise reduction) tool [11]. Donoho and Johnston [12] 
showed that this method has statistical optimality properties. 
Many algorithms define a criterion to divide wavelet transform 
coefficients into two groups. The first group contains the 
coefficients dominated by a noise, while other coefficients are 
rather clean. These algorithms eliminate all wavelet coefficients 
below a certain threshold, because these coefficients are 
dominated by a noise.  

Let’s consider the following model of the received discrete noisy 
signal 



 

(14)  

or in a vector notation: 

 

(15)  

To reconstruct the original data, a wavelet representation is 
used. We use simple non-redundant orthogonal, discrete wavelet 
transforms. An orthogonal matrix W can be used to represent 
this operation. We consider the following transform: 

 

(16)  

These transforms localize the most important spatial and 
frequencies characteristics of a regular signal in a limited number 
of wavelet coefficients. On the other hand, it is easy to prove that 
an orthogonal transform of a stationary, white noise results in a 
stationary white noise. This means that the expected noise 
energy is the same in all coefficients. If this energy is not to 
large, the noise has a relatively small influence on the important 
large regular signal coefficients. These observations suggest 
replacing the small coefficients by zero, because they are 
dominated by noise and carry only a small amount of 
information. 

The thresholding operations can be represented as 

 

(17)  

where 

 

(18)  



There are known two threshold methods – hard threshold and 
soft threshold (or shrinking function) [13-15]. 

In the case of the hard threshold the entries of the matrix D are 

 

(19)  

In the case of soft threshold the entries of the matrix D are 

 

(20)  

These threshold functions are shown in Fig. 3. A wavelet 

coefficient  between - and  is set to zero, while others have 
the same value in the case of the hard threshold, or are shrunk 
in an absolute value in the case of the soft threshold. 

Fig 3: Hard thresholding (a) and soft 

thresholding (b) functions.  

A natural question arising from this procedure is how to chose 

the threshold. If y is the result of applying threshold procedure 



to the wavelet coefficients of signal y, and  = y-f is the noise of 
this result, then an often used criterion to measure the quality of 

this result is its signal to noise ratio (SNR()): 

 

(21)  

An optimal choice of  should maximize SNR(). This is 
equivalent to minimizing the mean squared error R: 

 

(22)  

Because the wavelet transform is orthogonal, we can also 
compute R from the wavelet coefficients as: 

 

(23)  

 = W is the noise after operation in the wavelet domain. 

However, because f is unknown, the function R is not 

computable and hence it cannot be used to find optimal . For 
automatic spline smoothing it was suggested to adapt general 
cross validation (GCV). Our aim is to minimize error function 
based on an unknown exact signal. We therefore try to find a 
good compromise between a goodness of fit and smoothness. 
We assume that the original signal is regular to some extend, 
which means that the value fi can be approximated by an linear 

GCV combination of its neighbors. So, by considering yi a 
combination of fi, not depending on fi itself, we can eliminate the 
noise in this particular component. Since we replace it by a 



weighted average of its neighbors, the noise in these 
components is smoothed, and so we end up with a relatively 
clean, noise-independent value. Applied to the wavelet 
procedure this GCV should be a function of a threshold value 
using only known data and having approximately the same 

minimum as the residual function R(). 

We have a definition of general cross validation: 

 

(24)  

where . 

Note that if ij, then dij=0. For i=j we have 

 

(25)  

Thus, if Tr(D') is the trace of D', 

 

(26)  

The results of applying the threshold procedure on the reflected 
signal are depicted in Fig. 4. In this case only a fragment of the 
Barker code is used for formatting M-sequence. 



a  

b  

c  

Fig 4: The reflected signal: a - without applying de-

noising procedure, b - after applying hard thresold 

procedure, c - after applying soft threshold procedure.  

Wavelet transform based signal processing 
method for ultrasonic NDT system  

In order to reduce computations, the reference signal xref and the 

reflected signal y (signal y after applying thresholding 
procedure) are transformed: 



 

(27)  

After applying this transform we get digital signals and with 
logical values "0" and "1". This transform is possible because the 
most important information is the pulse widths of M-sequence. 
Results of applying procedure (27) are shown in Fig. 5 

Fig 5: The transformed reflected signal: a - the reflected 

signal without noise, b - the reflected noisy signal after 

applying hard threshold procedure, c - the reflected noisy 

signal after applying sof threshold procedure.  

The soft threshold procedure allows achieving a better visual 
quality, than the hard threshold procedure as shown in Fig.4. 
But, when the noise level is high, applying the soft thresholding 
procedure more distorts pulse widths of the transformed signal 
as shown in Fig.5. 

The results of these transforms depend on the threshold 1 
value, which optimal value varies in accordance to the noise 

level . When the threshold is low, an additional pulses emerge 
in the transformed signal , as shown in Fig. 5b. When the 



threshold value is high, the pulse widths of the transformed 
signal are shrinking and pulses may be distorted as shown in 

Fig. 5c. The optimal threshold 1 value was defined by 
computing maximum value of the correlation function: 

 

(28)  

at different threshold 1 values. 

The best results were achieved when 1=1.4, where  is the 
threshold value defined by computing GCV function. Note that 
GCV function computation in this case does not require any 
floating-point operation and may be computed by a hardware. 
These computations may be simplified in the case when a fixed 
M-sequence is used. 

Such a procedure may be used for recovering a distance to the 
object from noisy data. It possesses three steps: 

1. apply the interval adapted pyramidal algorithm of Cohen, Daubechies, Jawerth and Vial 

[11] to the measured data, obtaining empirical wavelet coefficients i  

2. apply the soft threshold nonlinearity coordinatwise to the 

empirical wavelet coefficients with the specially chosen threshold ;  

3. invert the pyramid filtering recovering ;  

4. apply the transform (xx) to the reference signal xref and de-noised data y;  
5. detect the argument of correlation function maximum value. 

For a fast wavelet transform we need 2N2F flops, where F is the 
number of filter coefficients. For F=4 , we have 16N flops. To 

reconstruct the signal after operation with the optimal threshold  
we need 16N flops.  

Computation of GCV() can be performed completely in the 

wavelet domain. Because GCV() is an approximation itself it is 
not useful to compute its minimum very precisely. Moreover, in 

most cases this is not necessary to the curve of R() in the 
neighborhood of its minimum. A relative accuracy of 10-3 is 



enough. Using a classic minimization procedure (such as 
Fibonacci) this requires approximately 15 function evaluations. 
The denominator N-Tr(D')counts the number of coefficients that 
are set to zero. This does not require any floating-point 
operation. Computation of the nominator can be done with 2N 
floating point operations. So 15 function evaluations lead to 
some 30N floating-point operations. 

Computation of the signal can be done with N floating point 
operations. 

Computation of the correlation function does not require any 
floating-point operation. 

So execution of the suggested signal processing algorithm leads 
to 63N operations. Execution of a classical signal processing 
algorithm leads to (L+2P)N operations, where N is the number of 
samples, L is the length of M-sequence, P is the model order of 
the inverse filter. The suggested algorithm requires less floating-
point operations, when  
(L+2P)>63. 

Conclusions  

Generally the flaw signals measured in ultrasonic NDT systems 
are spoiled by different kind of a noise. Therefore, the approach 
of signal processing should be involving the noisy signal itself in 
constructing the signal processing method. The noise in such 
systems is cancelled by band modification using moving 
average, signal averaging, inverse filtering and noise 
cancellation by subtraction. These methods are time consuming 
and due to signal processing time restrictions not always may be 
used in real time systems. During the last time the wavelets have 
become a popular de-noising (or noise reduction) tool and this 
method has statistical optimality properties. New data processing 
method based on the wavelet transform for real time systems is 
suggested. It is shown that the hard threshold algorithm is 
preferred to the soft threshold in such systems. Execution of this 



method leads to less amount of floating point operations than 
classical signal processing methods. 
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