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Three-Dimensional Encoding/Two-Dimensional
Decoding of Medical Data

Gloria Menegaz*Member, IEEEand Jean-Philippe ThiraMember, IEEE

Abstract—We propose a fully three-dimensional (3-D) problem of context modeling for efficient entropy coding. The
wavelet-based coding system featuring 3-D encoding/two-dimen- performance of the 3-D extension of the embedded zerotree

sional (2-D) decoding functionalities. A fully 3-D transform is . ; : . ;
combined with context adaptive arithmetic coding; 2-D decoding wavelet (EZW)-based coding algorithm [4] is analyzed in

is enabled by encoding every 2-D subband image independently. [51-17]. A S"th'y different appro_ach. IS descrlped |n_ [8l, Whgre
The system allows a finely graded up to lossless quality scalability & 3-D-DCT is followed by quantization, adaptive bit allocation
on any 2-D image of the dataset. Fast access to 2-D images iand Huffman encoding. In [9]-[11], a 3-D separable wavelet
obtained by decoding only the corresponding information thus transform is used to remove interslice redundancy, while in

avoiding the reconstruction of the entire volume. The performance [12] different sets of wavelet filters are used in in the «)
has been evaluated on a set of volumetric data and compared to N

that provided by other 3-D as well as 2-D coding systems. Results plane and d|r_ect|on_, respectwel_y, to agcount for Fhe difference
show a substantial improvement in coding efficiency (up to 33%) between the intraslice and and interslice resolution.

on volumes featuring good correlation properties along ther axis. This led to the common consensus that the exploitation of the
Even though we did not address the complexity issue, we expect afy|| 3-D data correlation potentially improves compression. The

decoding time of the order of one second/image after optimization. ; _ : ; ;
In summary, the proposed 3-D/2-D multidimensional layered zero main drawback of 3-D systems is computational complexity. If

coding system provides the improvement in compression efficiency an |_ncre_zase |n_ the_ encoding time mlght_ b_e tolerated, a swift de-
attainable with 3-D systems without sacrificing the effectiveness coding is of prime importance for the efficient access to the data.

in accessing the single images characteristic of 2-D ones. A possible solution has been proposed in [1] and [5]. It consists
Index Terms—3-D/2-D, compression, lossless, volumetric data, !N SPIitting the volume in coding units of 8 or 16 images each
wavelets. and processing those independently in order to save memory

and reduce the coding time. Coding units are figegkiori, as
well as the number of images which are decoded at one time.
Our solution that is based on the observation that itis common
OST of the current medical imaging techniques produgeactice to analyze 3-D data distributions one image at a time
three-dimensional (3-D) data distributions. Some dbr medical examination. Accordingly, in order to be suitable
them are intrinsically volumetric, like magnetic resonanceaithin a picture archiving and communication system (PACS)
(MR), computerized tomography (CT), positron emission t@& coding system must provide a fast access to the single 2-D
mography (PET), and 3-D ultrasound, while others describe tineages. In the proposed solution, the decoding time is kept low
temporal evolution of a dynamic phenomenon as a sequencdgfminimizing the amount of information to be decoded to re-
two-dimensional (2-D) images, so that they are more propeggnstruct any 2-D image (or, more in general, subset of images)
labeled as 2-D+time. The huge amount of data generated evetihe dataset. This is accomplished by independently encoding
day in the clinical environment has triggered considerab&ach subbandimage, and making the corresponding information
research in the field of volumetric data compression for theccessible through the introduction of some special characters
efficient storage and transmission. The basic idea is to tafie®., markers) into the bitstream. Once the user has specified
advantage of the correlation among the data samples in the 3hB position of the image of interest along thexis, the set
space to improve compression efficiency. The most widespregfdsubband images that are needed for its reconstruction is de-
approach combines a 3-D decorrelating transform with termined and the related information is decoded. The inverse
extension of a coding algorithm that has proved to be effectidiscrete wavelet transform (IDWT) is performed locally and the
on 2-D images. In [1], the 3-D version of the set partitioningingle image is recovered. The coding scheme is based on the
in hierarchical trees (SPIHT) [2] algorithm for image commultirate 3-D subband coding of video described in [13]. What
pression is applied to volumetric medical images. The sawe retain is the strategy used for entropy coding, namely the
guideline is followed in [3], where the authors also address theultidimensional context-adaptive arithmetic coding [14]. The
subtended subband structure is nevertheless different. We per-

form a 3-D-DWT on the volume instead of treating differently
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The 3-D-DWT is followed by successive approximation
guantization and context adaptive arithmetic coding. Some
markers are placed in the codestream for the random access to
the encoded information. By combining the 3-D-DWT with 2-D
spatial neighborhoods for entropy coding, the resulting MLZC
algorithm features 3-D encoding/2-D decoding capabilities.

However, many degrees of freedom are left for the design of
the system. The shape of the spatial support of the neighborhood
defining the context and the placement rule of the markers in the
bitstream lead to different working modes. The global-progres-
sive (G-PROG) mode is obtained by encoding the volume as a
whole and without putting any marker. This mode provides the
best compression efficiency. Both 2-D and 3-D contexts can be
x used. The resulting bitstream is fully embedded, supporting a
Fig. 1. Volumetric data. We calt the third dimension, and assume that theflm:"ly_graded range of t?lt_ra,‘tes ensurlr)g scalable quality on the
images are the intersections of the volume with a plan orthogonahids. volume, but 2-D decoding is not possible. The layer-per-layer
(LPL), and LPL progressive (LPL-PROG) modes are obtained

h di inciple i din Secti d Secti b&/ adding some markers in order to enable random access to
The coding principle is presented in Section V an ec'uon.Y e information of interest in the bitstream. More specifically,

illustrates the 'different working qualities. The COMPressiofa | p| mode provides random access to every subband image.
per_formance IS analyzed in Section VII, and Section VI jgeqa is to decode the entire information concerning the set
derives conclusions. of subband images needed to reconstruct the image of interest
at full quality (i.e., lossless). To achieve quality scalability on
the final 2-D image, other markers must be added, leading to
the LPL-PROG mode. Direct access is possible to every quan-
tization layer of every subband image. Scalable quality is ob-
The combination of the 3-D wavelet transform withaaithoc  tained by successively decoding the quantization layers, i.e.,
coding strategy provides high coding efficiency and fast acce§¢ bitplanes, of the concerned subband images. The drawback
to any 2-D image of the dataset. Given the index of the imadfe the bitstream over-heading due to the additional informa-
of interest along the axis (z coordinate in Fig. 1), the corre- tion needed for data addressing, which reduces compression ef-
sponding portion of the bitstream is accessed and decodedigency. Fig. 2 summarizes the three working modalities and
recover it at the desired quality. At the encoder, the data are fitliistrates the position of the markers in the bitstream. In the
decorrelated by a 3-D DWT and then encoded via the MLZfigure, H is for the Header of the bitstream, ahfi represents
technique. At the decoder, the set of wavelet coefficients nébe quantization layer of the subband image at positigrn a
essary to reconstruct an image of indeis automatically de- given 3-D subband. In the G-PROG mode, the whole informa-
termined and only the corresponding parts of the bitstream &i@n concerning the quantization laygis encoded for all the
decoded. The IDWT is performed locally, reducing the memogpbband images. In the LPL mode, all quantization layers are
requirements and the computational cost. located in the same segment and markers are placed only be-
The wavelet transform has many features that make it suitabéeenL?, and {7, » being the number of quantization steps.
for our application. The approximation properties of reasonabljnis reduces the number of markers while preserving 2-D de-
smooth signals have determined the success of wavelet-ba&e@ding capabilities, improving the compression efficiency at the
techniques for image compression. Noteworthy, the JPEG208@ense of the SNR scalability in lossy regime. Indeed, such a
standard [15] follows the same approach. The implementatiBtpde is intended for recovering the 2-D image of interest at full
via the lifting steps scheme [16] is particularly advantageo@lality. Finally, in the LPL-PROG mode, the order is the same
in this framework. First, it provides a very simple way of conbut markers are put betwedrj and L/, Vi, ;.
structing nonlinear wavelet transforms mapping integer-to-in-
tegervalues[17]. Thisis very important for medical applications
because it enables lossless coding. Second, perfect reconstruc- |||. | NTEGERWAVELET TRANSFORM VIA LIFTING
tion is guaranteed by construction for any kind of signal exten-
sion along borders. This greatly simplifies the management ofThe spatial correlation among data samples is exploited by
the boundary conditions and facilitates the selection of the coaffully 3-D separable wavelet transform. The signal is suc-
ficients needed to reconstruct an image. Third, itis computatioressively filtered and down-sampled in all spatial dimensions.
ally efficient. It can be shown that the lifting steps implementarhe decomposition is iterated on the approximation low-pass
tion asymptotically reduces the computational complexity byksnd, which contains most of the energy [19]. Fig. 3 shows the
factor 4 with respect to the classical filter-bank implementatiasiassical filter-bank implementation of the DWT. The forward
[18]. Finally, the transformation can be implemented in-plac&ansform uses two analysis filteré(z) (low-pass) andj(z)
namely progressively updating the values of the original sarfibandpass), followed by subsampling, while the inverse trans-
ples, without allocating auxiliary memory. form first up-samples and then applies two synthesis filters,

Il. THE 3-D/2-D MULTIDIMENSIONAL LAYERED
ZERO CODING (MLZC) SYSTEM
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Fig. 2. MLZC working modalities. H: bitstream headér, quantization layer of the subband image at positigin a given 3-D subband. In the G-PROG mode,

the whole information concerning the quantization layisrencoded for all the subband images. In LPL mode, all the quantization layers are located in the same
segment and markers are only betwdgnandL ", n being the number of quantization steps. In the LPL-PROG mode, the order is the same but markers are
put betweerZ? and L7 *!, Vi, j.

= (1) LP S filter pair (h, g) is complementaryln this case, the following
hz") @ @ hz) theorem holds [16]:

I @— Theorem 1: Given a complementary filter paifi(g), then
there always exist Laurent polynomialgz) and¢;(z) for 1 <

oz ) —@—» HP ——@— e(z) i < m and a nonzero constaht so that
_ 1 osiz) 1 0][K o0
Fig. 3. DWT. P(z) _1:[1 [0 ) } [ti(z) 1} [0 %} )

h(z) (low-pass) ang(z) (bandpass). Fig. 4 shows a two IeveIﬁ'he block diagrams for the forward and inverse transforms are

DWT on a natural image. The approximation subband is;g,qtrated in Figs. 6 and 7, respectively. Each triangular matrix
coarser version of the original, while the other subbands riﬁ

s ) N , _¢orresponds to one lifting step. The number of lifting steps
resent the high frequencies (details) in the horizontal, vert pends on both the length of the filters and the factorization.

anld dri]agonal diredction, rESpECt:\DI\E/’\IIYI; is imol q d_It is worth noticing that the result of the Euclidean factoriza-
n the proposed system, the IS implemented accordigg, s ot unique, so many lifting representations are possible

to the recentl_y developed lifting steps scheme [16]._ T_he _IiftinQ)r the sameP(z). From Figs. 6 and 7 it is easy to realize that
scheme provides a way to perform any DWT with finite filterg, o 5 nhesis chain can be obtained by mirroring the filter-bank
with a finite number ofifting steps The lifting steps represen- from the analysis counterpart and changing the sign of the fil-
tgtion of a given filter is obtained b_y the Euclid_ean factor_izq—ers_ The global system can be seen as a sequerta/aido
tion of the polyphase matrix (see Fig. _5) of the fllter_bank 'ntgteps, for which the perfect reconstruction property is ensured
a sequence of 2 2 upper and lower triangular matrices. The, o, nstrction, This provides additional degrees of freedom in
polyphase matrix’(z) is defined as the design of the filters, allowing any nonlinear operations into
P(z) = [ he(2)  ge(2) ] ) the basic blopks and any kind of signgl exteqsion out.side the_bor-
ho(2)  go(2) ders. In particular, the integer DWT is obtained by introducing
a rounding operation after each lifting step [17]. As mentioned

where in Section Il, the availability of an integer version of the trans-
ho(22) = h(z) + h(=2) qe(z2):9(z) +9(=2) form enables lossless coding and makes the algorithm suitable
2 ’ 2 for the implementation on a device. However, the integer coef-
ho(22) = h(z) — h(==) qo(zz):g(z) —9(=2) (2) ficients are approximations of those that would be obtained by
2271 2271 projecting the signal on the original wavelet basis. This can be

h.(z) andh,(z), respectivelyg.(z) andg,(z), are the even and modeled by an equivalent noise which becomes noticeable when
odd polyphase components of the synthesis filfer), respec- the hypothesis of high-resolution quantization holds. It can be
tively, g(z). If the determinant of?(z) is equal to one, then the shown that it introduces an additional contribution to the quanti-
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(a) (b)

Fig. 4. DWT of a natural image. (a) Original; (b) DWT subbands for a two level decomposition. The approximation subband is a coarser versionrudlthe origi
while the other subbands represent the high frequencies (details) in the horizontal, vertical and diagonal direction.
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Fig. 5. Polyphase representation of the wavelet transform.

zation noise, which degrades the rate/distortion performancef@fm allows to map such a task to the one-dimensional (1-D)
the coding system [20]. Furthermore, it is responsible for an asase. The core of the problem consists in finding the set of
cillatory trend of the PSNR along theaxis, making the quality subband coefficients needed to recover one signal sample.
of the reconstructed image dependent on its position within tl@en, results can be easily extended to intervals (i.e., signal
volume. The analysis of such a phenomenon is out of the scagmgments) and, eventually, multiple dimensions.

of this paper. We refer to [21] for more details. What it is impor-

tant to mention here is that the amount of such noise is propor- IV. POINT-WISE IDWT

tional to the number of rounding operations, which in turn de- . ) ) ) ]

pends on the decomposition depth and the lifting chain length N this section, we formalize the PW-IDWT. Itis basically a
Accordingly, we have restricted the choice of filters to the famil}-D problem: each pixel of the image to recover is regarded as

of theinterpolating filters[22] admitting a two-steps chain  the samples(k) in positionk of the 1-D signal observed along
the parallel to the axis passing trough it. Correspondingly, the

P(z) = [1 ge(z)] set of subband coefficients that are needed for its reconstruction
ho(2) 1+ ho(2)ge(2) by IDWT maps to the coordinates of the subband images along

_ [1 0] [1 ge(Z)] (4) thez axis.
~Lho(z) 1[0 L] The proposed solution exploits the inherent recursive nature

As the choice of the filter-bank is not critical for compressiofif the wavelet transform. The IDWT is an iterative process
performances, we choose the«3 [22] filter. Being extremely startl'ng at the coarsgst scale: the appro>§|ma_1t|on subband at
short — two steps of length two each — it minimizes the numb&}e finer ¢ — 1) level is reconstructed by filtering the set of
of subband images to decode for recovering the 2-D image&efficients at the coarséievel according to [19]
interest, as will be discussed in Section IV. - -

The particular structure of the lifting chain facilitates the ; _ _ _ _
determination of the set of subband images needed for ?F\(é L) = n:Z_oo ik 2n)a(l’n)+nzz_oog(k 2n)d(l,n)
point-wise IDWT (PW-IDWT). The separability of the trans- (5)
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Fig. 6. Forward wavelet transform using lifting.
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Fig. 7. Inverse wavelet transform using lifting.

whereqa(-) andd(-) are the approximation and detail subbands, _TABLE | '

respectively, and= 1,..., L is the decomposition level, which NUVBER gﬁ@[fiﬁ%ﬁff.aﬁ% 'Egﬁlzsﬁggé’;g NEEDED TORECOVER
increases with the depth of the decomposition. The sigi#alis I = 3 LEVELS OF DECOMPOSITION

reconstructed by iterating such a procedureffor [ > 1. The

number of coefficients taking part to the convolutioninagive ¢ [j|k=0|k=1]k=2[k=3]k=4][k=5]k=6]r=7
subband depends on the length of the filter and on the numt ol 1 9 9 9 9 9 9 9
of decomposition levels. The method used to determinetheg 3 | ;| 3 3 3 3 3 3 3
sitions of the involved coefficients in each subband consists - - - -
climbing back the synthesis filter-bank and keeping track of tt o || 2 > > ! ? ! >
positions of the subband coefficients that get involved step | i 2 > 5 5 2 5 2 5
step. Given the positioh of the sample of interest in the signal a| 1 2 1 2 1 2 1 2
domain, we start by identifying the set of coefficie@®(1, ;) d] 2 3 2 3 2 3 2 3
that are needed at the finest resolution (Les 1). Here,j is  Total 9 15 13 15 11 15 11 15
the subband index and takes the valuésr approximation and

d for details, respectively. For doing this, we look into the syn- TABLE Il

thesis chain from its output, and follow it step by step, keepingvumeer or SampLES GP(1, ), IN SuBBAND (7, ) NEEDED TORECOVER
track of the samples needed by the lifting steps filters. Due to  THE SAMPLE AT POSITION k USING THE 9/7 FLTER AND FOR

the recursiveness of the IDWT, givétP (1, j) the procedure is L = 3 LEVELS OF DECOMPOSITION

iterated to geGP(Z,j'), at the next finer.resolution (i.d.= 2). TTecolhoilecalios | koalis|ro6]r=r
The only difference is that now there issatof samples to be . .
recovered (GP(1,a)} instead of a single one. The iteration of 5 |“| ° ? 5 0 0 0 5 5
such a procedure fdr= 1,..., L — 1 results in the complete d] 6 | 6 6 T T | 6 | 6
set of necessary subband coefficients. , | 5 5 4 5 5 5 4 5
The procedure can be easily generalized to set8){ & € d| 6 6 5 6 6 6 5 6
K} of samples in the signal space. L&® ([, ), identify the al 3 4 3 4 3 4 3 4
coefficients in subbang at level/ needed to reconstruct the ' | ;| 4 5 4 5 4 5 4 5
signal sample in positiok. Then, the solution for the set of 2 | 31 | 27 | 33 | 31 | 33 | 27 | 31
samples §(k)} is
GP(l,7) = U,GP(l, )i Vk € K. (6) Tables land Il givezP(l, j); as afunction of the sample posi-
tionkforli =1,...,L, L = 3. The number of samples required

Formula (6) also applies to subband intervals. It is worth meim each subband turns out to be a periodic functiokh wfth pe-
tioning here thatiP(l, j), depends oft being even or odd. In riod 7 = 2". To outline the dependency 6fP(l, 5);, from k,
general, with the usual structure of the lifting scheme startimgsults are provided for’2= 8 successive values @f As the
with an s-type step, odd indexed samples correspond to largéter used is very short, the number of wavelet coefficients in-
GP(l,j)r. We refer to the Appendix A for the details. volved in the PW-IDWT is very small. For comparison, Table Il



MENEGAZ AND THIRAN: THREE-DIMENSIONAL ENCODING/TW-DIMENSIONAL DECODING OF MEDICAL DATA 429

I I
oy s
! ! LLL
' LL
LLH
L I
I
L LHL
LH
| |
X : y | z LLL | LHH
| | I |
' LL | L HIL
L LIH | HL
L I _ HLH
' IHL I
LH H L\ HHL
! LHH
: ! ! HH| __________ HHH
! L HLL ! !
| |
: HL | |
HLH
|
|
H . HHL
! HH| ______ HHH
| |
| |
Fig. 8. Set of 3-D subbands resulting frain= 2 levels of decomposition.
shows the size d&P(l, ), for the 9/7 filter [23]. The number of TABLE Il
coefficients is more than doubled. This means that in the consid- Tora ’\"?LI’E"QZE,\""STORFU?#FNBQ':A'Z\(';"E"QGFESRTE ?E:,fODE FOR
ered application the amount of information to decode increases ’ o
of more than the 50%, compromising the efficiency of the de- Ngklol 1 2345 67

coder. In the 3-D system, filtering is successively performed on
thez, y, andz directions. We assume that the 2-D images are
stacked along theaxis. Then, the positions of the wavelet coef-
ficients that are needed in each subband map to the positions of
the subband images—along thaxis—within the corresponding noise implied by the integer lifting. All this makes such a filter
subband. AccordinghG:P(/, 7). identifies thez-coordinates of particularly suitable for our application.

all the images in subband §) that are necessary to recover the

image of interest. In this case, the indeselects either low-pass V. MLZC

(4 = a) or high-pass{ = d) filtering alongz. The total number

N, of subband images needed for the reconstruction of imagd“ILZC is based on the layered zero coding (LZC) algorithm
k is given by [ci3]. The main differences between LZC of [13] and the

proposed MLZC algorithm concern the underlying subband

(2,2) | 34| 46 | 49 | 46 | 42| 46 | 42 | 46
(9/7) | 58 | 139 | 111 | 161 | 82 | 147 | 111 | 139

N, =4 x [GP(L,a)r + GP(L,d)g] structure and the definition of theonditioning terms This
1 section starts with an overview of the basic principles of the
+ Z [3x GP(l,a)r +4 x GP(l,d)x]. (7) LZC method and then details the proposed system. Particularly,
I=L—1 Section V-A summarizes the basics of LZC and Section V-B

The intuition for this is given in Fig. 8. The number of 3-pintroduces the MLZC coding principle and describes how the
subbands obtained by low-pass filtering alarig equal to four pondmonmg te.rr_ns.are defined and generalized for 3-D and
for! = L andis equal to three fér< L. Conversely, the number interband conditioning.

of z-high-pass subbands is equal to four at any level. Table IlI

showsN;, for the5 x 3 and the 9/7 filters. Again, thex 3 filter

will provide a significant reduction of decoding time compared In the LZC approach, each subband is quantized and en-
to the 9/7. The two filters perform quite similarly in terms oftoded in a sequence &f quantization layersLy, ..., Ly_1,
lossless rate, but thHex 3 minimizes the power of the roundingcorresponding to progressively finer quantization step sizes
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Qo, ---,QN—_1. Each quantizer produces a sequence of syrmerresponding information associated to the significance state
bols. The symbols for quantize®), are encoded into the of a sample is thét" bit of its binary representation being 0
guantization layeL,. The information necessary to recover ther 1. A coefficient issignificantif at least one 1 symbol has
symbols for quantize®,,, given that the symbols for quantizersbeen generated by its quantization during the previous steps,
Qo, ..., Qn_1 are already known, is encoded into layky. i.e.,3i <i:o[k,l,j] = 1 whereQ); is the current quantization
Due to the inherent embedding, the information needed d$tep size. For ead);, the significance state of each coefficient
recover the subband samples with the resolution correspondisgietermined scanning the subbands starting from the lowest
to Q; is obtained by decoding the layekg thoroughL;. The resolution. For the resulting symbol, two coding modes are pos-
LZC method is based on the observation that the most frequsittle: significanceandrefinemenmode. The significance mode
symbol produced by the quantizers is the zero symbol, aisdused for samples that were not significant during all the pre-
achieves high efficiency by splitting the encoding phase in twdous scans, whether they are significant or not with respect to
successive steps: the current threshold. For the other coefficients, the refinement
e 7ero Coding:encodes a Symb0| representing ﬁ]gmﬂ- mode is used. The significance mode is used to encode the sig-
canceof the considered coefficients with respect to thgificance map. The underlying model consists in assuming that
current quantizer (i.eQ,,(x[i]) being zero or nonzero); if a coefficient is lower than a certain threshold, it is reasonable
« Magnitude refinementgenerates and encodes a symbd expect both its spatial neighbors and its descendants being
defining the value of each nonzero symbol. Zero Codirlgwer than a corresponding threshold too. The significance map
exploits some spatial or other dependencies among s@Bnsists of the sequence of symbols
band samples by providing such information toomtext- 1, if Qife(k)] # 0
adaptivearithmetic coder [24]. Basically, the expected sta- oilk] = { ’ ' (10)
tistical relationships among coefficients are modeled by
defining someconditioning termswhich summarize the wherek = n,i + n,j defines the position of the considered
significance statef the samples belonging to a generalsample and the, operator quantizes(k) with step@;. In
ized neighborhood of the coefficient being encoded. Sug¥hat follows, we callocal scaleneighborhood of a coefficient
terms are then used for entropy coding by the context!, j, k) in subband; j) and positiork the set of coefficients
adaptive arithmetic coder. Different solutions are possiblging in the spatial neighborhoall (k, 7, 7). Then, we will refer
for the definition of the conditioning terms, accounting foto the sequence of symbols resulting from the application of
both local and wide scale neighborhoods. We refer to [18§): to the setc(l, j, k) as too;][l, j,k]|. The significance state

0, otherwise

for more details. of the samples in the generalized neighborhood(kf [, j) is
represented by some conditioning terms). Thelocal-scale
B. MLZC Coding Principle conditioning termsy®(-) concern spatial neighborhoods while

MLZC applies the same quantization and entropy Codir{gterbandtermsxf() account for interband dependencies
policy as LZC to a different subband structure. All the subbands a1 s .
are encoded according to the layered PCM scheme. In order to Ml K = x5 K 1 K V£ L (11)
detail the way the spatial and interband relationships are &is rule does not apply to the coarsest subbands]i-e. [,
ploited, we use the concepts géneralized neighborhooahd for which no parents can be identified. In this case, only the
significance stat@f a given coefficient. We define generalizedocal-space contribution is used. Thé[/, 7, k] are defined as
neighborhood of a subband samplg, j, k) in subbandj of linear combinations of functions representing the significance
levell and positiork the setG'N (7, j, k) consisting of both the state of one or more samples¥(/, j, k)
coefficients in a given spatial neighborhodd, j, k) and the

P-1
arent coefficient(l + 1, j,k’) in the same subband at the next s . .
anrser scale Wh(eﬂé :thi 1/2] Xk, 15l =Y wyoll,j,K]VK € N (12)
, =

GN(l,j,k) = N(l,j, k) Ue(l + 1,5, K). (®) wherep = p(k’). The weightsw, = 27 are such that each
The MLZC scheme uses the significance state of the samplegn of the summation contributes to the value of e bit-
belonging to ageneralizecheighborhood of the coefficient to Plane ofx*[l, j, k|, P is the bit depth ofy°[l, j, k|, and o is

be coded for conditioning the arithmetic coding [14]. the distribution of the sequence of symbelg, j, k) generated
The generating rule for the sequence of quantization stdpt quantizer?);. The set of local-scale bi-dimensional settings
sizes is that have been tested is illustrated in Fig. 9. Contexts number 1
Qi1 ‘ to 5 only account for coefficients which have already been en-
Qi= for0<i< N coded in the current step, while those of number 6 to 8 also use
Qo =2losa (max |[e(e LI} ©) samples which will be successively encoded in the current step,

so that their significance state refers to the previous scan, i.e.,
The maximum valu€), is the largest power of two within the quantization factor. Since the number of entries of the proba-
range of the magnitude of the subband samples. The signffility table used by the context adaptive arithmetic coder is equal
cance of a coefficient with respect @, thus means that the to the number of different values thgtcan take, the grouping
most significant bit (MSB) of the coefficient is 1. Since (9)of o may become unavoidable when dealing with local-space
preserves the property of each being a power of two, the neighborhoods of wide support. This sets an upper limit on the
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Fig. 9. Two-dimensional contexts.

number of possible contexts for avoiding the degradation of p&iens have been tested far & 1). The first one consists of the
formance of the arithmetic coder. The contexts shown in Fig.sdmple with samerf( y) coordinates as the one being encoded.

correspond to the following expressions: The second is cross-shaped and it is centered:.ip)(on the
previous subband image. In this case, the significance state of
x> W[k] =olk — i the coefficients at{ — 1) are combined either all together or
Xs,(2)[k] =20k —i—j]+ ok —i] bytpeehrs. I;orL( + 1),dor_1rI%/ the sa::pple Witfh san:_e;(y) coo_lrldi-t e
SOk =201k — i k_i nates has been used. The resulting configurations are illustrate
Xs (4)[ I =20 'f] +.a[ i . L. in Fig. 10. The name associated with each context is in the form
X [k] =dolk —i—j] + 20k —i] + o[k — i +]] (n1n,ns) where the indexes identify the 2-D context in the pre-
x> O[k] =80k —i—j] + 4o[k—i] + 20[k—i+j] + o[k—j]  vious @-—1), current ¢) and next ¢+ 1) layer, respectively. The
XS’(G)[k] =80k —i] + 4ok — j] + 20 [k + j] + o[k +i] casens, ny = 0 re_veals that no s_am_p_les have been considered
O[] =32(0k —i— ]V ok — i +j]) in the corresponding layer. The significance state of the samples

in the adjacent planes determinggk, [, j] according to
+16(cfk+i—j]Volk+i+j)+ | P nesk, [, j] 9

s,(1n,0) _ _ s,(np)
+80lk — i + dofk — | + 2olk+ ok 1] X 1)[“] =wpolk —q + x> [k] o
K] =1280k — i — j] + 640k — ] XUV k] =wpiiolk + q] + wpolk — q] + x* " [K]
X OK] =wp (ok —i— g Volk +i—q

x Volk —j—q]Volk+j—q])+

+wpolk —q] + x* " [K]
x*(@np1) (k] =wpyo0k + q]+
wherei andj are the unit vectors of the reference systemy, +wpyi(ok—j—q]Volk+j—q]

and the indexes identifying the subbands have been subtended. . .
e Volk—i—q]Volk+i—
MLZC enables 3-D local-scale conditioning terms. Even though x Volk —i-q]Volk+i-dq])

+320[k — i+ j] + 160k — j]+
+8ck+j] + 4ok +1—j]
+ 20k —i] + o[k + i+ j] (13)

it is reasonable to expect that the use of 3-D contexts would +wpolk —q] + XS’(nP)[k]
improve the coding efficiency, because of the exploitation of x™®"*?[k] =wpi2(olk —i—q] V o[k +1i— q])
the full correlation among DWT coefficients, some care must +wpyi(ofk —j—q]Volk+j—q])+

be devoted to the design gf k] in order to keep the dimen- + wpolk — ] + x> [k]
sionality of the conditioning space sufficiently small. The 3-D (3n,1) .
local-scale conditioning terms have been obtained by extendingt =~ " k] =wpisolk +q] + wpia(ofk —i-q]
to the third dimension the set of thel most performant 2-D x Volk +i—q))+
ﬁontgxts. Thte s(;;p(;:)?rn;(]l,j,;) of ?acrt;bselzc_ted 2-D co_r|1|te>§t e +wpyi(ok —j—q]Volk+j—q))

as been extended to the adjacent subband images as illustrate s,(np
in Fig. 10. According to our conventions, the subband image +wpolk —al+x ( )[k] (14)
with index ¢z — 1) is scanned before that with indexmaking wherek = =i + yj + zq is the 3-D coordinate vector and
the significance state of the corresponding samples with respeet = 2”, P being the position of the MSB of*("»). Results
to the current quantization level available for its encoding. Coshow that the spatial contexts leading to better performances
versely, only the significance state relative to the previous sce@rrespond toy, = 6, 7, and 8. Their 3-D extension leads to
is known for the subband image of index ¢ 1). Since we the triplets ¢1n,n3) withn, =1, 2, 3, anths = 0, 1.
expect a more pronounced correlation among the significance o
states of adjacent samples within the same scan, we deciftednterband Conditioning
to give more degrees of freedom to the extension of the inter-The observed self-similarity among subbands within the
scale conditioning term in the previous { 1) than the next subband tree makes the paret + 1,5, k’) of the current
(v + 1) subband images. Particularly, two possible configuraeefficientc(l, j, k') the most natural candidate for interband
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S
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Current voxel

Fig. 10. Extension of the spatial support in the previous—(1) and the nextx + 1) subband images. Squares with same pattern represent voxels whose
significance states are combined in the definition of the correspongdifig /, ;].

conditioning. Accordingly, the expression for the interbanthis mode, the compression ratio is maximized, but the 3-D
conditioning term is encoding/2-D decoding functionalities are not enabled.

X1, 7, K] = wpyep ol + 1,5, K] (15) B. LPL-PROG Mode

— 2Puse s the weight needed to define the MSB This scheme is d_erived from the G-PROG mode by z_iddi_ng
a marker into the bitstream after encoding every quantization
layer of every subband image (see Fig. 2). Since the quantizers
X, 7,k = x°[, 5, K] +Xf[l,j7 k|VI#L. (16) are successively applied — as in the G-PROG mode — sub-
band-by-subband and, within each subband, image-by-image,
Again, this rule does not apply to the coarsest subbands, iregressiveness by quality is allowed on both the whole volume
I = L, for which no parents can be identified. In this case, onlind any 2-D image, provided that 2-D local-scale conditioning
the local-space contribution is used. is used. The drawback of this solution is the overloading of the
encoded information.

wherewp,, .,
of the global context

VI. BITSTREAM SYNTAX

This section describes the bitstream syntax, i.e., the way t%'e LPL Mode
encoded information is organized. The ability to access anyOne way of reducing the overloading implied by the
2-D image of the set constrains the bitstream structure. In kffL-PROG mode is to apply the whole set of quantizers to
the modes (G-PROG, LPL-PROG, and LPL), the subbands &&ch subband image of positionalong thez axis before
scanned starting from coarsest resolution. The signal approXjtitching to the next one/(+ 1). The progressive by quality
mation L.LL;—y, is encoded first, and all the subbands at levénctionalities are suboptimal on both the single images and
(I + 1) are processed before any subband at the next finer leffe¢ whole volume. This degrades the performance in the lossy
I. What makes the difference among the considered workif@ime with respect to the G-PROG mode. Quality scalability
modalities are the order of encoding of the subband images &@4!d be improved by aad-hocprocedure for rate allocation.
the placement of the markers. We describe them in what followd€ leave this subject for future investigation.

starting from the less constrained one. As previously mentioned, all these configurations have been
tested in conjunction with both the 2-D and 3-D contexts. Nev-
A. G-PROG Mode ertheless, the desired 3-D encoding/2-D decoding capabilities

The set of quantizers is applied to the whole set of Subbaﬁ(&nstram the choice to bi-dimensional contexts without inter-

images before passing to the next subband. The scannlr"f]&d conditioning.
order follows the decomposition level: all subbands at level
[ are scanned before passing to level(1). In other words,
during stepi, the quantizerQ; is applied to each image of The performance of the MLZC 3-D encoding/2-D decoding
each subband. This enables scalability on the whole volunsystem has been evaluated on the four datasets illustrated in
decoding can be stopped at any point into the bitstream. Fig. 11.

VII. RESULTS AND DISCUSSION
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Fig. 11. Samples of the 3-D dataset. First line: DSR images. The brightest region in the middle represents the left ventricle of a canine heart: Beaccend |
head MRI, saggital view. Third line: MR-MRI; Fourth line: opthalmologic angiography sequence (2-D+time). The brightness results from the éloontfakt
medium into the vessels.

« Dynamic spatial reconstructor (DSR). The complete pixels. A voxel represents approximately.9 mm)?3 of
DSR set consists of a four-dimensional (3-D+time)  tissue.
sequence of 16 3-D cardiac CT data. The imaging device « MRI head scan. This volume consists of 128 images of
is a unigue ultra-fast multislice scanning system built  size 256x 256 pixels representing the saggital view of an
and managed by the Mayo Foundation. Each acquisition human head.
corresponds to one phase of the cardiac cycle of a canines MR-MRI head scan. This volume has been obtained at the
heart and is composed of 107 images of size 1228 Mallinckrodt Institute of Radiology (Washington Univer-
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sity) [5]. It consists of 58 images of a saggital view of tht > PROGNP
-A- LPL-PROG-NP

head of size 256& 256 pixels. Since this dataset has als — LPL-NP
been used as a test set by other authors [5], [3], [25] .5
allows to compare the compression performances of t
MLZC to other 3-D systems. )
« Opthalmologic angiography (ANGIO). The ANGIO set isg *'
a 3-D sequence (2-D+time) of angiography images ofs
human retina, consisting of 52 images of 26856 pixels.
The different characteristics of the considered datasets make
resulting test set heterogeneous enough to be used for charai
izing the system. The DSR volume is very smooth and featur
high correlation among voxels along all the three spatial dime
sions. This makes it very easy to code and particularly suital s
for the proposed coding system. It represents the “best ca
test set, for which the coding gain of 3-D over 2-D systems
expected to be the highest. Conversely, the ANGIO dataset « 2 s 5 7 s T "
be considered as the “worst case” for a wavelet-based coding contex

system. The Images are hlghly contrasted: very sharp edgesIf’lar.elz Lossless rates as a function of the conditioning terms for DSR. No

juxtaposed to a smooth background. Wavelet-based coding tegfdrband conditioning has been applied (NP). The LPL-PROG mode enables
nigues are not suitable for this kind of data. The edges spread deCﬁding Vﬁhile a(ljlg\évtijn% rt)r:ggégzselggggﬁqs fg qgﬁg?;n t;r;] Ctg: ;—Eiri]mbae@tl\?vse-en
out in the whole subband structure generating a distribution %%eé‘_’PthgzrngrfpaL o o, sp
non zero coefficients whose spatial arrangement cannot be prof-
itably exploited for coding. This is due to the fact that wavelets
are not suitable descriptors of images with sharp edges [28}, LPL mode. Fig. 12 shows the lossless rate as a function of the
[27]. The problem of image representation is a hot topic in tig@atial conditioning terms (i.e., without interband conditioning)
field of signal processing, and is subject to a deep investigatidat DSR. As expected, the best performances in terms of loss-
The MR-MRI set has been included for sake of comparison wiléss rate are obtained in the G-PROG mode. As itis the case for
the results provided by other authors [5]. Nevertheless, we BEW-3-D, the G-PROG mode does not allow 2-D decoding. In
not consider it as representative of a real situation becauség LPL and LPL-PROG modes, such a functionality is enabled
went through some preprocessing. In particular, it has been &i-the expense of coding efficiency, which decreases because
terpolated, scaled to isotropic 8-bit resolution and thresholded.the additional information to be encoded to enable random
Finally, the characteristics of the MRI set lie in between. Not@&ccess.
worthy, the structure and semantics of the MRI images make theOne of the constraints posed by 2-D decoding is that no inter-
volume suitable for anbject-basedpproach to coding. band conditioning can be used. Even though the exploitation of
The 3-D/2-D MLZC system is a good the trade off betweethe information about the significance of the parent within the
the gain in coding efficiency provided by fully 3-D algorithmssubband hierarchy can be fruitful in some cases, the compres-
and the fast access to data provided by 2-D coding systersion performances are not much affected by such a limitation.
where each image is treated independently. As it allows to d&mr example, Fig. 13 illustrates the impact of interband condi-
cess any 2-D image without decoding the entire volume, it mitioning on the G-PROG and LPL-PROG modes for DSR. In the
imizes the decoding time while improving compression. Ads-PROG mode, the lossless rate is slightly improved for 2-D
cordingly, the evaluation of the 3-D/2-D MLZC system perspatial conditioning, while it is basically left unchanged for 3-D
formance concerns both coding gain and decoding delay. Disntexts. Conversely, in the LPL-PROG mode performance is
ferent 2-D and 3-D coding algorithms have been consideregightly degraded. This is related to the sparseness of the sam-
The benchmark for the 3-D case is the 3-D generalization ples in the conditioning space. Due to the smoothness along the
the well known EZW coding algorithm [4]. Because of the inz axis, the exploitation of the significance state of the neigh-
terband relationship among the coefficients within the subbahbdring voxels is fruitful for entropy coding up to a limit where
tree, EZW-3-D does not allow 3-D/2-D functionalities. In factthe dimension of the conditioning space becomes so large that
the parent-children relationship exploited for coding preventise available samples are not sufficient to be representative of
the independent access to the coefficients of different subbaritie statistics of the symbols. The point where such a critical con-
The MLZC system has been analyzed by determining the loshtion is reached depends on the characteristics of the dataset
less rate corresponding to the complete set of contexts in eactd, in particular, on its size. In general, larger volumes take
working mode. As was explained in Section V-B, the 3-D spadvantage of wider spatial supports and interband conditioning.
tial supports for the conditioning terms result from the extensidrhe observed dependency of the lossless rate on the design pa-
of one of the most performant bi-dimensional configurations tameters of the conditioning terms (i.e., the spatial support and
the adjacent planes along thexis. The context that has beerthe use of interband conditioning) also applies to the bi-dimen-
chosen for the definition of the 3-D conditioning terms is theional version of the MLZC algorithm, labeled as 2-D-PROG.
(060). Indeed, results show that it is among the three most pAgain, the efficiency of the entropy coding increases with the
formant 2-D contexts on all the datasets in LPL-PROG as wsikze of the spatial support up to a limit where the sparseness of
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outperforms both JPEG2000 and JPEG-LS. Fig. 16 shows the
resulting lossless rate as a function of the image index for the
three datasets. The coding parameters, namely the filter used
and the number of levels of decomposition, are the same as for
the other methods. For DSR [Fig. 16(a)] the curve is quite flat
and the average compression ratio is quite high (about 2.2),
indicating that all the images are equally easy to code. In the
case of MRI [Fig. 16(b)], the shape of the curve reflects the
trend of the number of “nonbackground” pixels of the images
with the position along the: axis. Accordingly, the central
images are encoded at a higher rate than the boundary ones.
The oscillatory trend of MR-MRI [Fig. 16(c)] is probably due

to preprocessing. Finally, the slope of the line for ANGIO
[Fig. 16(d)] data is due to the increasing number of visible
vessels due to the flow of the contrast medium which augments

Fig. 14. Lossless rates for DSR set with the PROG-2-D algorithm. Impacttiie contrast reducing the efficiency of the coder. The average

interband conditioning.

compression ratio for these last two cases is about 1.8.
Table IV summarizes the performance of the different algo-

the conditioning space does not allow an adequate represernitams and working modes. The (060) and (160) contexts were
tion of the statistics of the symbols to be encoded. Fig. 14 givelsosen as references, and no interband conditioning was used.
an example. For each context, the lossless rate has been aAsrwas the case for JPEG2000, the data concerning the 2-D
aged over the entire set of 2-D images of the volume. The (0Gyorithms were obtained by running them on the whole set
and (070) spatial supports lead to the highest compression@a2-D images and taking the average of the resulting set of
tios. However, the impact of the conditioning term is not verlpssless rates. For the old JPEG standard (JPEG-LS), all of the

sensible (about 1.2% of the minimum rate).

seven available prediction modes were tested and the one pro-

The bench-mark for 2-D systems is the new coding standariding the best performance (correspondingifo= 7 for all
for still images JPEG2000 [15], [28]. JPEG2000 has bed¢he datasets) was retained. As it was reasonable to expect, the
designed to overcome some of the limitations of JPEG [28bding gain provided by the 3-D over the 2-D systems depends
and supports a wide variety of features. Among others are imn the amount of correlation and smoothness along theis.
proved compression efficiency, lossy to lossless performancascordingly, it is quite pronounced for DSR and MR-MRI, for
scalability (by quality and by resolution) and region of interesthich the LPL mode leads to a rate saving of about 16%, re-
(ROI)-based functionalities. As MLZC and EZW-3-D, it isspectively, 33% over JPEG2000, while it is lower for both MRI
wavelet-based and the DWT is implemented by the lifting stepsd ANGIO. For MR-MRI some results are available in the lit-
scheme. Fig. 15 compares the performance of the differamature. We refer here to those presented in [5]. The first one was
2-D algorithms for DSR. In this case, the 2-D-PROG modeabtained forl. = 3 and using the integer version of thex3
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Fig. 16. Lossless rates obtained by applying JPEG2000 standard to (a) DSR, (b) MRI (c) MR-MRI and (d) ANGIO datasets.

TABLE IV
LOSSLESSPERFORMANCES(BIT/VOXEL) WITH 5 X 3 FILTER. THE DECOMPOSITIONDEPTH ISL = 4 FORDSR, MRIAND MR-MRI, AND L = 3 FORANGIO.
THE TwO VALUES CORRESPOND TO THECONTEXTS (060) AND (160) FOR EACH DATASET. NO INTERBAND CONDITIONING IS USED.
THE LAST COLUMN IS THE PERCENTAGE OFRATE SAVING PROVIDED BY MLZC-LPL Over JPEG2000.

ctx/mode | G-PROG | LPL-PROG | LPL | EZW-3D || 2D-PROG | JPEG2000 | JPEG-LS || A[%]
2.99 3.11 3.03
DSR 293 308 3.06 2.88 3.56 3.62 3.90 16.3
4.58 4.63 4.55
MRI 159 160 152 4.46 4.62 4.65 5.10 2.2
2.24 2.28 2.24
MR-MRI 219 993 999 2.271 2.92 2.95 3.437 33.06
4.19 4.23 4.20
ANGIO 116 199 191 4.18 441 4.43 3.87 5.2

filter. The second was based on a two levels integer transfo@APROG without interband conditioning and context (370) —
with the (1 + 1, 1) filter on 16 slice coding units, and the com+esults in 2.143 bit/voxel.

pression efficiency data were averaged over the volume. ThéThe case of MRI is particularly interesting and deserves
coding scheme — 3-D CB-EZW — was a version of EZW-3-Burther comments. The majority of the voxels (about 80%)
exploiting context modeling. The corresponding lossless ratepresent a “nondiagnostically relevant” information, i.e.,
were 2.285 and 2.195 bit/voxel. The best MLZC mode — thihe “background.” This makes it particularly suitable for
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Fig. 17. Performances in lossy regime of LPL-PROG and 2-D-PROG on MRI. (a) PSNR as a function of the image cutegi(iate); each image has been
independently decoded at 0.5 bit/pixel. (b) PSNR as a function of the bitrate for images 40 and 41 of the dataset.

object-based coding: the object of interest (usually called RQi}cillation has period one, namely every other image has better
is encoded independently and with highest priority than thggiality. This makes the improvement in image quality provided
rest of the image. In the framework of ROI-based coding, thm®y the 3-D system dependent on the position of the image within
weight assigned to a voxel depends on its semantics, whitle dataset. Fig. 17(b) shows the PSNR for images of index 40
is assumed to be the criterion for the judicious allocation afnd 41 as a function of the decoding rate. The maximum and
the available resources (e.g., bit-budget, bandwidth). In thisean increase in the PSNR are about 4.7 and 2.7 dB for image
sense, the improvement in coding efficiency is related to tHd®, and about 0.8 and 2.7 for image 41, respectively. As men-
prioritization of the information to be transmitted. An extentioned above, this is due to both the rounding and the quanti-
sion of 3-D/2-D MLZC featuring ROI-based functionalities iszation noise. We are currently investigating this issue to extend
currently under development. It will allow random access tihe model proposed in [18] to the 3-D case and define a quan-
any object of any 2-D image of the dataset at the desired uptizmation policy ensuring a more uniform decoding quality, for a
lossless quality [7]. given rate, over the entire volume.

The best compression performances for ANGIO are obtainedThe other parameter to be considered for the evaluation of
by JPEG-LS. As mentioned above, such a dataset is not suitathke performances of the 3-D/2-D MLZC system is the decoding
for wavelet-based coding, so that other algorithms can easilydeay, which entails the analysis of the complexity. In this paper,
more effective. Nevertheless, the LPL method provides an ime did not address the problem of computational efficiency
provement of about 5% over JPEG2000. The 3-D encoding/2&Dd no optimization was performed. Consequently, the decoding
decoding approach can thus be considered as a good tradeoftinee is suboptimal and as such it is not meaningful neither rep-
tween compression efficiency and the availability of higher leveésentative of what it would be in the optimized version. As a
functionalities which are not available with JPEG-LS. Amongeneral comment, even though a more detailed analysis of the
these are quality scalability and both lossy and lossless represammplexity is required for the evaluation of the global perfor-
tations of the encoded information within the same codestreamance of the system, there is clearly a tradeoff between the im-

The evaluation of the performance in lossy regime was optovement in compression efficiency and the increase in com-
of the scope of this paper. The observed oscillatory trend plexity when switching from 2-D to 3-D systems. Nevertheless,
the PSNR along the coordinate axis entails the analysis of bdiis does not compromise their usefulness. What is important is
the rounding noise implied by integer lifting [18] and the quartheabsolutedecoding time, namely the time the user has to wait
tization noise. Fig. 17 gives an example. After encoding the access the decoded image, rather tharrdlaive increase
volume in the LPL-PROG mode, every image of the dataset haih respect to the 2-D counterpart. We expect our system being
been independently decoded at the resolution of 0.5 bit/pixable to reach a decoding time of less than one second per image
Fig. 17(a) compares the corresponding PSNR to that obtairedter optimization. Last but not least, large PACS can easily in-
by separately encoding and decoding each image with the Z@rporate high processing power (e.g., a multiprocessor archi-
version of the algorithm (2-D-PROG) at the same rate. It is inbecture) at a price that is negligible with respect to the whole
portant to notice that the control over the decoding bitrate on thest of a PACS. Therefore we consider that the complexity of
single 2-D images is only possible when they are decoded am& method is not a major issue for real implementations.
by one. On average, the 3-D method outperforms the 2-D counin our opinion, the proposed approach to coding has
terpart on the central portion of the dataset (images 20-108),high potential, especially if combined with ROI-based
which are not dominated by the background. In this case, thanctionalities.
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GP(l+1,a) i‘

ba“ " b M * a(I+1,k)
' s (z) tngz) 5,(2) tl(z) B> a(lk)
é b O
Gh(k+1.0) 2 d(1+1,k)

Fig. 18. Generalized projection of the subband samplek) in the approximation band of levél to the next coarser scale subbands. Depending loging
even or odd, the sample to recoveri$l + 1. k") ord’(l + 1, k'), respectively. Accordingly: = a in the first case, angl = b in the second.

VIIl. CONCLUSION A+, - Al - AN+, - A, -
b b b b
a a a a

We presented a wavelet-based coding system featuring &
encoding/2-D decoding capabilities. In this way, the improvt
ment in coding efficiency provided by 3-D algorithms can b
obtained without sacrificing the fast access to single 2-D in t(z) s5(z)
ages. Data decorrelation is performed by a fully 3-D-DWT. Th i i
implementation of the transform by the lifting scheme enabl i
lossless functionalities, permits the in-place implementatio @
minimizing the run-time memory allocation, and reduces tt
computational complexity up to a factor 4. The set of subbal
images needed to reconstruct a given 2-D image dependson ...~ d
length of the synthesis filters and the number of decomposmon (@) (b)
levels. The 2-D decoding mode is obtained by mdependenﬂ;,é 19. Notations for the left end of GP during its evaluatibjt:*-— is for
encoding each subband image. The amount of overloadingtt@f upper branch, ankl;"**~ for the lower branch; being the index of the
the bitstream in the different working modalities depends gqnsidered step. (a):step; (b)s-step.
many factors, like the dynamic range of the transformed coeffi-
cients, the decomposition depth, the statistics of the source ag@band at level), we want to determine its GP at the next
the availability of the PSNR scalability. The performance of thgyarser levelGP(I + 1, ), = a,d. As GP(l, ), depends
system was compared to that of other state-of-the-art 2-D a§l; being even or odd, we introduce an additional ingieto
3-D algorithms, including JPEG2000. make the distinction. The set of lifting steps involved in the syn-

Results show that 3-D/2-D MLZC has an high potential, eSpgiresis of an even sample is indeed different from the set of those
cially in the framework of the emerging model-based approaglacessary for an odd sample. Th€H (I + 1, ) = a,d
to coding. Accordingly, we are improving our system by genefndicates the GP in subbanti{ 1, j) of a sample in subband

=@

alizing it for object-based processing. (I,7) of even {1 = a) or odd @« = b) position, respectively, as
illustrated in Fig. 18. In the figure, the first filtering step of the
APPENDIX | lifting chain is assumed to be of typeas usually is. This cor-
POINT-WISE IDWT responds to setting (z) = 0in (3). We calla’ (1, k") (d'(1, k"))

In what follows, we provide a detailed description of the pradhe sample to recover at the end of the synthesis chait for
cedure followed to determine the set of wavelet coefficienyen (odd). The GP is determined by identifying the positions
needed for PW-IDWT. We call it generalized projection (GPYfits endsp/ "~ andv’"*, respectively. Here, we subtend the in-
of the considered sample into the transformed domain. dexes andi: for simplicity of notations. Let thety; (I7;) be the

Let GP(1, j) be the GP of(k) in subband( j). For gener- causal (anti-causal) length of tif& lifting filter, wheref =s,t
ality, we state the problem as follows: given a wavelet samplentifies the filter type. Finally, Ielb(‘;r1 B b”rl +) identify the

a(l, k) at positionk in subband [ a) (i.e., the approximation border samplebeforethei'" stepf in the syntheS|s chain, and
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(Ei”;, b}t) the same quantitgfter f, as shown in Fig. 19 for the
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partitioning the bitstream into semantically disjoint sets. Some

casef = t. The following updating rule holds [see Fig. 19(akpecial symbols omarkers must be introduced, which can

and (b)]:
b =by~ (17
j)fl+1,+ :i)(il,+ (18)
lAJf;"l’_ = min{lAJf}l’_7 b~ + 17} (29)
I;Z+1’+ = 111ax{52+, bt 41}, (20)

(As these rules refer to a geneiié step, the the: index has
been omitted). If one prediction stepis considered, the up-
dating rules become

bl = min{bh b5 4+ 17} (21)
bttt = max{biT, lA)fi-’_ + 11} (22)
byt =b;” (23)
ittt =pit, (24)

If the total number of lifting steps isn, then the ends of
GP(l,j); are

b =i

a,+ _ im,+
b =bj
d,— _1m+1,—
by =b;

d,+ __im+1,+
it =t (25)
GivenGP(l + 1, ), namely the GP of the sampi¢/, k), the
GP of the set of samplesi{l, k), k € GP(I,4)*} can be ob-
tained as

GPH(l+1,7) = UGP"(I + 1,7)x Yk € GP(1,5)* (26)

whereGP(l, j)* is the GP of the signal sampi€k) in the ap-
proximation subband of levé| which is the set where(, k)
lives. The GP ofs(k) is thus determined iteratively, climbing
back the synthesis chain.

APPENDIX I
BITSTREAM OVERLOADING

be unambiguously interpreted asparatorsby the decoder.
Since the whole set of values 0-255 attainable by the coding
unit is used by the arithmetic coder, no special characters were
a priori available to be used as markers. In order to overcome
this problem, a special role has been assigned to one character
of the set, together with an additional syntactic rule. ISet

be the chosen symbol. The rule can be stated as follows: the
symbol S is replaced by a sequence of two symbols depending
on its semantic. The additional symbol would $gin normal
working condition, andS; when used to build the marker. In
the specific:S = 255, S; = 0, andS; = 255.

The need of markers affects the coding system performance
both directly, as additional information to be written into the bit-
stream, and indirectly, degrading the efficiency of the entropy
coder by increasing the number of information units associated
to symbolS. As the number of separators is a function of the
volume size and the dynamic range of the transformed coeffi-
cients, it can be evaluated after the transformation has been per-
formed. Conversely, neither the number of spediaymbols
nor the number of flush bytes can be calculaguliori, because
they depend on the statistics of the symbols to be encoded. We
refer to [21] for more details.
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