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Three-Dimensional Encoding/Two-Dimensional
Decoding of Medical Data

Gloria Menegaz*, Member, IEEE,and Jean-Philippe Thiran, Member, IEEE

Abstract—We propose a fully three-dimensional (3-D)
wavelet-based coding system featuring 3-D encoding/two-dimen-
sional (2-D) decoding functionalities. A fully 3-D transform is
combined with context adaptive arithmetic coding; 2-D decoding
is enabled by encoding every 2-D subband image independently.
The system allows a finely graded up to lossless quality scalability
on any 2-D image of the dataset. Fast access to 2-D images is
obtained by decoding only the corresponding information thus
avoiding the reconstruction of the entire volume. The performance
has been evaluated on a set of volumetric data and compared to
that provided by other 3-D as well as 2-D coding systems. Results
show a substantial improvement in coding efficiency (up to 33%)
on volumes featuring good correlation properties along the axis.
Even though we did not address the complexity issue, we expect a
decoding time of the order of one second/image after optimization.
In summary, the proposed 3-D/2-D multidimensional layered zero
coding system provides the improvement in compression efficiency
attainable with 3-D systems without sacrificing the effectiveness
in accessing the single images characteristic of 2-D ones.

Index Terms—3-D/2-D, compression, lossless, volumetric data,
wavelets.

I. INTRODUCTION

M OST of the current medical imaging techniques produce
three-dimensional (3-D) data distributions. Some of

them are intrinsically volumetric, like magnetic resonance
(MR), computerized tomography (CT), positron emission to-
mography (PET), and 3-D ultrasound, while others describe the
temporal evolution of a dynamic phenomenon as a sequence of
two-dimensional (2-D) images, so that they are more properly
labeled as 2-D+time. The huge amount of data generated every
day in the clinical environment has triggered considerable
research in the field of volumetric data compression for their
efficient storage and transmission. The basic idea is to take
advantage of the correlation among the data samples in the 3-D
space to improve compression efficiency. The most widespread
approach combines a 3-D decorrelating transform with the
extension of a coding algorithm that has proved to be effective
on 2-D images. In [1], the 3-D version of the set partitioning
in hierarchical trees (SPIHT) [2] algorithm for image com-
pression is applied to volumetric medical images. The same
guideline is followed in [3], where the authors also address the

Manuscript received December 10, 2000; revised August 30, 2002.Asterisk
indicates corresponding author.

*G. Menegaz is with the Department of Computer Science, University of
Fribourg, CH-1700 Fribourg, Switzerland (e-mail: gloria@ieee.org).

J.- P. Thiran is with the Signal Processing Institute, School of Engineering
Techniques and Sciences, Swiss Federal Institute of Technology, CH-1015
Lausanne, Switzerland.

Digital Object Identifier 10.1109/TMI.2003.809689

problem of context modeling for efficient entropy coding. The
performance of the 3-D extension of the embedded zerotree
wavelet (EZW)-based coding algorithm [4] is analyzed in
[5]–[7]. A slightly different approach is described in [8], where
a 3-D-DCT is followed by quantization, adaptive bit allocation
and Huffman encoding. In [9]–[11], a 3-D separable wavelet
transform is used to remove interslice redundancy, while in
[12] different sets of wavelet filters are used in in the ()
plane and direction, respectively, to account for the difference
between the intraslice and and interslice resolution.

This led to the common consensus that the exploitation of the
full 3-D data correlation potentially improves compression. The
main drawback of 3-D systems is computational complexity. If
an increase in the encoding time might be tolerated, a swift de-
coding is of prime importance for the efficient access to the data.
A possible solution has been proposed in [1] and [5]. It consists
in splitting the volume in coding units of 8 or 16 images each
and processing those independently in order to save memory
and reduce the coding time. Coding units are fixeda priori, as
well as the number of images which are decoded at one time.

Our solution that is based on the observation that it is common
practice to analyze 3-D data distributions one image at a time
for medical examination. Accordingly, in order to be suitable
within a picture archiving and communication system (PACS)
a coding system must provide a fast access to the single 2-D
images. In the proposed solution, the decoding time is kept low
by minimizing the amount of information to be decoded to re-
construct any 2-D image (or, more in general, subset of images)
of the dataset. This is accomplished by independently encoding
each subband image, and making the corresponding information
accessible through the introduction of some special characters
(i.e., markers) into the bitstream. Once the user has specified
the position of the image of interest along theaxis, the set
of subband images that are needed for its reconstruction is de-
termined and the related information is decoded. The inverse
discrete wavelet transform (IDWT) is performed locally and the
single image is recovered. The coding scheme is based on the
multirate 3-D subband coding of video described in [13]. What
we retain is the strategy used for entropy coding, namely the
multidimensional context-adaptive arithmetic coding [14]. The
subtended subband structure is nevertheless different. We per-
form a 3-D-DWT on the volume instead of treating differently
the spatial and temporal dimensions.

The paper is organized as follows. Section II gives an
overview on the global system. In Section III, the lifting
scheme and integer wavelet transform are revisited. Section IV
describes the procedure followed to determine the set of sub-
band images needed to reconstruct a given image of interest.
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Fig. 1. Volumetric data. We callz the third dimension, and assume that the
images are the intersections of the volume with a plan orthogonal toz axis.

The coding principle is presented in Section V and Section VI
illustrates the different working modalities. The compression
performance is analyzed in Section VII, and Section VIII
derives conclusions.

II. THE 3-D/2-D MULTIDIMENSIONAL LAYERED

ZERO CODING (MLZC) SYSTEM

The combination of the 3-D wavelet transform with anad-hoc
coding strategy provides high coding efficiency and fast access
to any 2-D image of the dataset. Given the index of the image
of interest along the axis ( coordinate in Fig. 1), the corre-
sponding portion of the bitstream is accessed and decoded to
recover it at the desired quality. At the encoder, the data are first
decorrelated by a 3-D DWT and then encoded via the MLZC
technique. At the decoder, the set of wavelet coefficients nec-
essary to reconstruct an image of indexis automatically de-
termined and only the corresponding parts of the bitstream are
decoded. The IDWT is performed locally, reducing the memory
requirements and the computational cost.

The wavelet transform has many features that make it suitable
for our application. The approximation properties of reasonably
smooth signals have determined the success of wavelet-based
techniques for image compression. Noteworthy, the JPEG2000
standard [15] follows the same approach. The implementation
via the lifting steps scheme [16] is particularly advantageous
in this framework. First, it provides a very simple way of con-
structing nonlinear wavelet transforms mapping integer-to-in-
teger values [17]. This is very important for medical applications
because it enables lossless coding. Second, perfect reconstruc-
tion is guaranteed by construction for any kind of signal exten-
sion along borders. This greatly simplifies the management of
the boundary conditions and facilitates the selection of the coef-
ficients needed to reconstruct an image. Third, it is computation-
ally efficient. It can be shown that the lifting steps implementa-
tion asymptotically reduces the computational complexity by a
factor 4 with respect to the classical filter-bank implementation
[18]. Finally, the transformation can be implemented in-place,
namely progressively updating the values of the original sam-
ples, without allocating auxiliary memory.

The 3-D-DWT is followed by successive approximation
quantization and context adaptive arithmetic coding. Some
markers are placed in the codestream for the random access to
the encoded information. By combining the 3-D-DWT with 2-D
spatial neighborhoods for entropy coding, the resulting MLZC
algorithm features 3-D encoding/2-D decoding capabilities.

However, many degrees of freedom are left for the design of
the system. The shape of the spatial support of the neighborhood
defining the context and the placement rule of the markers in the
bitstream lead to different working modes. The global-progres-
sive (G-PROG) mode is obtained by encoding the volume as a
whole and without putting any marker. This mode provides the
best compression efficiency. Both 2-D and 3-D contexts can be
used. The resulting bitstream is fully embedded, supporting a
finely-graded range of bit-rates ensuring scalable quality on the
volume, but 2-D decoding is not possible. The layer-per-layer
(LPL), and LPL progressive (LPL-PROG) modes are obtained
by adding some markers in order to enable random access to
the information of interest in the bitstream. More specifically,
the LPL mode provides random access to every subband image.
The idea is to decode the entire information concerning the set
of subband images needed to reconstruct the image of interest
at full quality (i.e., lossless). To achieve quality scalability on
the final 2-D image, other markers must be added, leading to
the LPL-PROG mode. Direct access is possible to every quan-
tization layer of every subband image. Scalable quality is ob-
tained by successively decoding the quantization layers, i.e.,
the bitplanes, of the concerned subband images. The drawback
is the bitstream over-heading due to the additional informa-
tion needed for data addressing, which reduces compression ef-
ficiency. Fig. 2 summarizes the three working modalities and
illustrates the position of the markers in the bitstream. In the
figure, H is for the Header of the bitstream, and represents
the quantization layerof the subband image at positionin a
given 3-D subband. In the G-PROG mode, the whole informa-
tion concerning the quantization layeris encoded for all the
subband images. In the LPL mode, all quantization layers are
located in the same segment and markers are placed only be-
tween and , being the number of quantization steps.
This reduces the number of markers while preserving 2-D de-
coding capabilities, improving the compression efficiency at the
expense of the SNR scalability in lossy regime. Indeed, such a
mode is intended for recovering the 2-D image of interest at full
quality. Finally, in the LPL-PROG mode, the order is the same
but markers are put between and , , .

III. I NTEGERWAVELET TRANSFORM VIA LIFTING

The spatial correlation among data samples is exploited by
a fully 3-D separable wavelet transform. The signal is suc-
cessively filtered and down-sampled in all spatial dimensions.
The decomposition is iterated on the approximation low-pass
band, which contains most of the energy [19]. Fig. 3 shows the
classical filter-bank implementation of the DWT. The forward
transform uses two analysis filters, (low-pass) and
(bandpass), followed by subsampling, while the inverse trans-
form first up-samples and then applies two synthesis filters,
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Fig. 2. MLZC working modalities. H: bitstream header;L quantization layeri of the subband image at positionj in a given 3-D subband. In the G-PROG mode,
the whole information concerning the quantization layeri is encoded for all the subband images. In LPL mode, all the quantization layers are located in the same
segment and markers are only betweenL andL , n being the number of quantization steps. In the LPL-PROG mode, the order is the same but markers are
put betweenL andL , 8i, j.

Fig. 3. DWT.

(low-pass) and (bandpass). Fig. 4 shows a two levels
DWT on a natural image. The approximation subband is a
coarser version of the original, while the other subbands rep-
resent the high frequencies (details) in the horizontal, vertical
and diagonal direction, respectively.

In the proposed system, the DWT is implemented according
to the recently developed lifting steps scheme [16]. The lifting
scheme provides a way to perform any DWT with finite filters
with a finite number oflifting steps. The lifting steps represen-
tation of a given filter is obtained by the Euclidean factoriza-
tion of the polyphase matrix (see Fig. 5) of the filter bank into
a sequence of 2 2 upper and lower triangular matrices. The
polyphase matrix is defined as

(1)

where

(2)

and , respectively, and , are the even and
odd polyphase components of the synthesis filter , respec-
tively, . If the determinant of is equal to one, then the

filter pair ( ) is complementary. In this case, the following
theorem holds [16]:

Theorem 1: Given a complementary filter pair ( ), then
there always exist Laurent polynomials and for

and a nonzero constant so that

(3)

The block diagrams for the forward and inverse transforms are
illustrated in Figs. 6 and 7, respectively. Each triangular matrix
corresponds to one lifting step. The number of lifting steps
depends on both the length of the filters and the factorization.
It is worth noticing that the result of the Euclidean factoriza-
tion is not unique, so many lifting representations are possible
for the same . From Figs. 6 and 7 it is easy to realize that
the synthesis chain can be obtained by mirroring the filter-bank
from the analysis counterpart and changing the sign of the fil-
ters. The global system can be seen as a sequence ofdo/undo
steps, for which the perfect reconstruction property is ensured
by construction. This provides additional degrees of freedom in
the design of the filters, allowing any nonlinear operations into
the basic blocks and any kind of signal extension outside the bor-
ders. In particular, the integer DWT is obtained by introducing
a rounding operation after each lifting step [17]. As mentioned
in Section II, the availability of an integer version of the trans-
form enables lossless coding and makes the algorithm suitable
for the implementation on a device. However, the integer coef-
ficients are approximations of those that would be obtained by
projecting the signal on the original wavelet basis. This can be
modeled by an equivalent noise which becomes noticeable when
the hypothesis of high-resolution quantization holds. It can be
shown that it introduces an additional contribution to the quanti-
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Fig. 4. DWT of a natural image. (a) Original; (b) DWT subbands for a two level decomposition. The approximation subband is a coarser version of the original,
while the other subbands represent the high frequencies (details) in the horizontal, vertical and diagonal direction.

Fig. 5. Polyphase representation of the wavelet transform.

zation noise, which degrades the rate/distortion performance of
the coding system [20]. Furthermore, it is responsible for an os-
cillatory trend of the PSNR along theaxis, making the quality
of the reconstructed image dependent on its position within the
volume. The analysis of such a phenomenon is out of the scope
of this paper. We refer to [21] for more details. What it is impor-
tant to mention here is that the amount of such noise is propor-
tional to the number of rounding operations, which in turn de-
pends on the decomposition depth and the lifting chain length.
Accordingly, we have restricted the choice of filters to the family
of the interpolating filters[22] admitting a two-steps chain

(4)

As the choice of the filter-bank is not critical for compression
performances, we choose the 53 [22] filter. Being extremely
short – two steps of length two each – it minimizes the number
of subband images to decode for recovering the 2-D image of
interest, as will be discussed in Section IV.

The particular structure of the lifting chain facilitates the
determination of the set of subband images needed for the
point-wise IDWT (PW-IDWT). The separability of the trans-

form allows to map such a task to the one-dimensional (1-D)
case. The core of the problem consists in finding the set of
subband coefficients needed to recover one signal sample.
Then, results can be easily extended to intervals (i.e., signal
segments) and, eventually, multiple dimensions.

IV. POINT-WISE IDWT

In this section, we formalize the PW-IDWT. It is basically a
1-D problem: each pixel of the image to recover is regarded as
the sample in position of the 1-D signal observed along
the parallel to the axis passing trough it. Correspondingly, the
set of subband coefficients that are needed for its reconstruction
by IDWT maps to the coordinates of the subband images along
the axis.

The proposed solution exploits the inherent recursive nature
of the wavelet transform. The IDWT is an iterative process
starting at the coarsest scale: the approximation subband at
the finer ( ) level is reconstructed by filtering the set of
coefficients at the coarserlevel according to [19]

(5)
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Fig. 6. Forward wavelet transform using lifting.

Fig. 7. Inverse wavelet transform using lifting.

where and are the approximation and detail subbands,
respectively, and is the decomposition level, which
increases with the depth of the decomposition. The signalis
reconstructed by iterating such a procedure for . The
number of coefficients taking part to the convolution in a given
subband depends on the length of the filter and on the number
of decomposition levels. The method used to determine the po-
sitions of the involved coefficients in each subband consists in
climbing back the synthesis filter-bank and keeping track of the
positions of the subband coefficients that get involved step by
step. Given the position of the sample of interest in the signal
domain, we start by identifying the set of coefficients
that are needed at the finest resolution (i.e., ). Here, is
the subband index and takes the valuesfor approximation and

for details, respectively. For doing this, we look into the syn-
thesis chain from its output, and follow it step by step, keeping
track of the samples needed by the lifting steps filters. Due to
the recursiveness of the IDWT, given the procedure is
iterated to get , at the next finer resolution (i.e., ).
The only difference is that now there is asetof samples to be
recovered { } instead of a single one. The iteration of
such a procedure for results in the complete
set of necessary subband coefficients.

The procedure can be easily generalized to sets {
} of samples in the signal space. Let identify the

coefficients in subband at level needed to reconstruct the
signal sample in position. Then, the solution for the set of
samples { } is

(6)

Formula (6) also applies to subband intervals. It is worth men-
tioning here that depends on being even or odd. In
general, with the usual structure of the lifting scheme starting
with an -type step, odd indexed samples correspond to larger

. We refer to the Appendix A for the details.

TABLE I
NUMBER OF SAMPLESGP(l; j) IN SUBBAND (l; j) NEEDED TORECOVER

THE SAMPLE AT POSITION k USING THE 5� 3 FILTER AND FOR

L = 3 LEVELS OFDECOMPOSITION.

TABLE II
NUMBER OF SAMPLESGP(l; j) IN SUBBAND (l; j) NEEDED TORECOVER

THE SAMPLE AT POSITION k USING THE 9/7 FILTER AND FOR

L = 3 LEVELS OFDECOMPOSITION.

Tables I and II give as a function of the sample posi-
tion for , . The number of samples required
in each subband turns out to be a periodic function ofwith pe-
riod 2 . To outline the dependency of from ,
results are provided for 2 successive values of. As the
filter used is very short, the number of wavelet coefficients in-
volved in the PW-IDWT is very small. For comparison, Table II
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Fig. 8. Set of 3-D subbands resulting fromL = 2 levels of decomposition.

shows the size of for the 9/7 filter [23]. The number of
coefficients is more than doubled. This means that in the consid-
ered application the amount of information to decode increases
of more than the 50%, compromising the efficiency of the de-
coder. In the 3-D system, filtering is successively performed on
the , , and directions. We assume that the 2-D images are
stacked along theaxis. Then, the positions of the wavelet coef-
ficients that are needed in each subband map to the positions of
the subband images–along theaxis–within the corresponding
subband. Accordingly, identifies the -coordinates of
all the images in subband ( ) that are necessary to recover the
image of interest. In this case, the indexselects either low-pass
( ) or high-pass ( ) filtering along . The total number

of subband images needed for the reconstruction of image
is given by

(7)

The intuition for this is given in Fig. 8. The number of 3-D
subbands obtained by low-pass filtering alongis equal to four
for and is equal to three for . Conversely, the number
of -high-pass subbands is equal to four at any level. Table III
shows for the and the 9/7 filters. Again, the filter
will provide a significant reduction of decoding time compared
to the 9/7. The two filters perform quite similarly in terms of
lossless rate, but the minimizes the power of the rounding

TABLE III
TOTAL NUMBER OF SUBBAND IMAGES TO DECODE FOR

RECONSTRUCTINGIMAGE k FORL = 3.

noise implied by the integer lifting. All this makes such a filter
particularly suitable for our application.

V. MLZC

MLZC is based on the layered zero coding (LZC) algorithm
[13]. The main differences between LZC of [13] and the
proposed MLZC algorithm concern the underlying subband
structure and the definition of theconditioning terms. This
section starts with an overview of the basic principles of the
LZC method and then details the proposed system. Particularly,
Section V-A summarizes the basics of LZC and Section V-B
introduces the MLZC coding principle and describes how the
conditioning terms are defined and generalized for 3-D and
interband conditioning.

A. LZC

In the LZC approach, each subband is quantized and en-
coded in a sequence of quantization layers, ,
corresponding to progressively finer quantization step sizes
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. Each quantizer produces a sequence of sym-
bols. The symbols for quantizer are encoded into the
quantization layer . The information necessary to recover the
symbols for quantizer , given that the symbols for quantizers

are already known, is encoded into layer.
Due to the inherent embedding, the information needed to
recover the subband samples with the resolution corresponding
to is obtained by decoding the layers thorough . The
LZC method is based on the observation that the most frequent
symbol produced by the quantizers is the zero symbol, and
achieves high efficiency by splitting the encoding phase in two
successive steps:

• Zero coding:encodes a symbol representing thesignifi-
canceof the considered coefficients with respect to the
current quantizer (i.e., being zero or nonzero);

• Magnitude refinement:generates and encodes a symbol
defining the value of each nonzero symbol. Zero Coding
exploits some spatial or other dependencies among sub-
band samples by providing such information to acontext-
adaptivearithmetic coder [24]. Basically, the expected sta-
tistical relationships among coefficients are modeled by
defining someconditioning termswhich summarize the
significance stateof the samples belonging to a general-
ized neighborhood of the coefficient being encoded. Such
terms are then used for entropy coding by the context
adaptive arithmetic coder. Different solutions are possible
for the definition of the conditioning terms, accounting for
both local and wide scale neighborhoods. We refer to [13]
for more details.

B. MLZC Coding Principle

MLZC applies the same quantization and entropy coding
policy as LZC to a different subband structure. All the subbands
are encoded according to the layered PCM scheme. In order to
detail the way the spatial and interband relationships are ex-
ploited, we use the concepts ofgeneralized neighborhoodand
significance stateof a given coefficient. We define generalized
neighborhood of a subband sample in subband of
level and position the set consisting of both the
coefficients in a given spatial neighborhood and the
parent coefficient in the same subband at the next
coarser scale, where

(8)

The MLZC scheme uses the significance state of the samples
belonging to ageneralizedneighborhood of the coefficient to
be coded for conditioning the arithmetic coding [14].

The generating rule for the sequence of quantization step-
sizes is

for

(9)

The maximum value is the largest power of two within the
range of the magnitude of the subband samples. The signifi-
cance of a coefficient with respect to thus means that the
most significant bit (MSB) of the coefficient is 1. Since (9)
preserves the property of each being a power of two, the

corresponding information associated to the significance state
of a sample is the bit of its binary representation being 0
or 1. A coefficient issignificant if at least one 1 symbol has
been generated by its quantization during the previous steps,
i.e., where is the current quantization
step size. For each , the significance state of each coefficient
is determined scanning the subbands starting from the lowest
resolution. For the resulting symbol, two coding modes are pos-
sible:significanceandrefinementmode. The significance mode
is used for samples that were not significant during all the pre-
vious scans, whether they are significant or not with respect to
the current threshold. For the other coefficients, the refinement
mode is used. The significance mode is used to encode the sig-
nificance map. The underlying model consists in assuming that
if a coefficient is lower than a certain threshold, it is reasonable
to expect both its spatial neighbors and its descendants being
lower than a corresponding threshold too. The significance map
consists of the sequence of symbols

if
otherwise

(10)

where defines the position of the considered
sample and the operator quantizes with step . In
what follows, we calllocal scaleneighborhood of a coefficient

in subband ( ) and position the set of coefficients
lying in the spatial neighborhood . Then, we will refer
to the sequence of symbols resulting from the application of

to the set as to . The significance state
of the samples in the generalized neighborhood of is
represented by some conditioning terms . The local-scale
conditioning terms concern spatial neighborhoods while
interbandterms account for interband dependencies

(11)

This rule does not apply to the coarsest subbands, i.e., ,
for which no parents can be identified. In this case, only the
local-space contribution is used. The are defined as
linear combinations of functions representing the significance
state of one or more samples in

(12)

where . The weights 2 are such that each
term of the summation contributes to the value of thebit-
plane of , is the bit depth of , and is
the distribution of the sequence of symbols generated
by quantizer . The set of local-scale bi-dimensional settings
that have been tested is illustrated in Fig. 9. Contexts number 1
to 5 only account for coefficients which have already been en-
coded in the current step, while those of number 6 to 8 also use
samples which will be successively encoded in the current step,
so that their significance state refers to the previous scan, i.e.,
quantization factor. Since the number of entries of the proba-
bility table used by the context adaptive arithmetic coder is equal
to the number of different values thatcan take, the grouping
of may become unavoidable when dealing with local-space
neighborhoods of wide support. This sets an upper limit on the
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Fig. 9. Two-dimensional contexts.

number of possible contexts for avoiding the degradation of per-
formance of the arithmetic coder. The contexts shown in Fig. 9
correspond to the following expressions:

(13)

where and are the unit vectors of the reference system (),
and the indexes identifying the subbands have been subtended.
MLZC enables 3-D local-scale conditioning terms. Even though
it is reasonable to expect that the use of 3-D contexts would
improve the coding efficiency, because of the exploitation of
the full correlation among DWT coefficients, some care must
be devoted to the design of in order to keep the dimen-
sionality of the conditioning space sufficiently small. The 3-D
local-scale conditioning terms have been obtained by extending
to the third dimension the set of the most performant 2-D
contexts. The support of each selected 2-D context
has been extended to the adjacent subband images as illustrated
in Fig. 10. According to our conventions, the subband image
with index ( ) is scanned before that with index, making
the significance state of the corresponding samples with respect
to the current quantization level available for its encoding. Con-
versely, only the significance state relative to the previous scan
is known for the subband image of index ( ). Since we
expect a more pronounced correlation among the significance
states of adjacent samples within the same scan, we decided
to give more degrees of freedom to the extension of the inter-
scale conditioning term in the previous ( ) than the next
( ) subband images. Particularly, two possible configura-

tions have been tested for ( ). The first one consists of the
sample with same ( ) coordinates as the one being encoded.
The second is cross-shaped and it is centered in () on the
previous subband image. In this case, the significance state of
the coefficients at ( ) are combined either all together or
by peers. For ( ), only the sample with same ( ) coordi-
nates has been used. The resulting configurations are illustrated
in Fig. 10. The name associated with each context is in the form
( ) where the indexes identify the 2-D context in the pre-
vious ( ), current ( ) and next ( ) layer, respectively. The
case reveals that no samples have been considered
in the corresponding layer. The significance state of the samples
in the adjacent planes determines according to

(14)

where is the 3-D coordinate vector and
2 , being the position of the MSB of . Results

show that the spatial contexts leading to better performances
correspond to 6, 7, and 8. Their 3-D extension leads to
the triplets ( ) with 1, 2, 3, and , 1.

C. Interband Conditioning

The observed self-similarity among subbands within the
subband tree makes the parent of the current
coefficient the most natural candidate for interband
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Fig. 10. Extension of the spatial support in the previous (� � 1) and the next (� + 1) subband images. Squares with same pattern represent voxels whose
significance states are combined in the definition of the corresponding� [k; l; j].

conditioning. Accordingly, the expression for the interband
conditioning term is

(15)

where 2 is the weight needed to define the MSB
of theglobal context

(16)

Again, this rule does not apply to the coarsest subbands, i.e.,
, for which no parents can be identified. In this case, only

the local-space contribution is used.

VI. BITSTREAM SYNTAX

This section describes the bitstream syntax, i.e., the way the
encoded information is organized. The ability to access any
2-D image of the set constrains the bitstream structure. In all
the modes (G-PROG, LPL-PROG, and LPL), the subbands are
scanned starting from coarsest resolution. The signal approxi-
mation is encoded first, and all the subbands at level
( ) are processed before any subband at the next finer level
. What makes the difference among the considered working

modalities are the order of encoding of the subband images and
the placement of the markers. We describe them in what follows,
starting from the less constrained one.

A. G-PROG Mode

The set of quantizers is applied to the whole set of subband
images before passing to the next subband. The scanning
order follows the decomposition level: all subbands at level

are scanned before passing to level ( ). In other words,
during step , the quantizer is applied to each image of
each subband. This enables scalability on the whole volume:
decoding can be stopped at any point into the bitstream. In

this mode, the compression ratio is maximized, but the 3-D
encoding/2-D decoding functionalities are not enabled.

B. LPL-PROG Mode

This scheme is derived from the G-PROG mode by adding
a marker into the bitstream after encoding every quantization
layer of every subband image (see Fig. 2). Since the quantizers
are successively applied – as in the G-PROG mode – sub-
band-by-subband and, within each subband, image-by-image,
progressiveness by quality is allowed on both the whole volume
and any 2-D image, provided that 2-D local-scale conditioning
is used. The drawback of this solution is the overloading of the
encoded information.

C. LPL Mode

One way of reducing the overloading implied by the
LPL-PROG mode is to apply the whole set of quantizers to
each subband image of position along the axis before
switching to the next one ( ). The progressive by quality
functionalities are suboptimal on both the single images and
the whole volume. This degrades the performance in the lossy
regime with respect to the G-PROG mode. Quality scalability
could be improved by anad-hocprocedure for rate allocation.
We leave this subject for future investigation.

As previously mentioned, all these configurations have been
tested in conjunction with both the 2-D and 3-D contexts. Nev-
ertheless, the desired 3-D encoding/2-D decoding capabilities
constrain the choice to bi-dimensional contexts without inter-
band conditioning.

VII. RESULTS AND DISCUSSION

The performance of the MLZC 3-D encoding/2-D decoding
system has been evaluated on the four datasets illustrated in
Fig. 11.
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Fig. 11. Samples of the 3-D dataset. First line: DSR images. The brightest region in the middle represents the left ventricle of a canine heart. Second line: human
head MRI, saggital view. Third line: MR-MRI; Fourth line: opthalmologic angiography sequence (2-D+time). The brightness results from the flow of the contrast
medium into the vessels.

• Dynamic spatial reconstructor (DSR). The complete
DSR set consists of a four-dimensional (3-D+time)
sequence of 16 3-D cardiac CT data. The imaging device
is a unique ultra-fast multislice scanning system built
and managed by the Mayo Foundation. Each acquisition
corresponds to one phase of the cardiac cycle of a canine
heart and is composed of 107 images of size 128128

pixels. A voxel represents approximately mm of
tissue.

• MRI head scan. This volume consists of 128 images of
size 256 256 pixels representing the saggital view of an
human head.

• MR-MRI head scan. This volume has been obtained at the
Mallinckrodt Institute of Radiology (Washington Univer-
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sity) [5]. It consists of 58 images of a saggital view of the
head of size 256 256 pixels. Since this dataset has also
been used as a test set by other authors [5], [3], [25] it
allows to compare the compression performances of the
MLZC to other 3-D systems.

• Opthalmologic angiography (ANGIO). The ANGIO set is
a 3-D sequence (2-D+time) of angiography images of a
human retina, consisting of 52 images of 256256 pixels.

The different characteristics of the considered datasets make the
resulting test set heterogeneous enough to be used for character-
izing the system. The DSR volume is very smooth and features
high correlation among voxels along all the three spatial dimen-
sions. This makes it very easy to code and particularly suitable
for the proposed coding system. It represents the “best case”
test set, for which the coding gain of 3-D over 2-D systems is
expected to be the highest. Conversely, the ANGIO dataset can
be considered as the “worst case” for a wavelet-based coding
system. The images are highly contrasted: very sharp edges are
juxtaposed to a smooth background. Wavelet-based coding tech-
niques are not suitable for this kind of data. The edges spread
out in the whole subband structure generating a distribution of
non zero coefficients whose spatial arrangement cannot be prof-
itably exploited for coding. This is due to the fact that wavelets
are not suitable descriptors of images with sharp edges [26],
[27]. The problem of image representation is a hot topic in the
field of signal processing, and is subject to a deep investigation.
The MR-MRI set has been included for sake of comparison with
the results provided by other authors [5]. Nevertheless, we do
not consider it as representative of a real situation because it
went through some preprocessing. In particular, it has been in-
terpolated, scaled to isotropic 8-bit resolution and thresholded.
Finally, the characteristics of the MRI set lie in between. Note-
worthy, the structure and semantics of the MRI images make the
volume suitable for anobject-basedapproach to coding.

The 3-D/2-D MLZC system is a good the trade off between
the gain in coding efficiency provided by fully 3-D algorithms
and the fast access to data provided by 2-D coding systems,
where each image is treated independently. As it allows to ac-
cess any 2-D image without decoding the entire volume, it min-
imizes the decoding time while improving compression. Ac-
cordingly, the evaluation of the 3-D/2-D MLZC system per-
formance concerns both coding gain and decoding delay. Dif-
ferent 2-D and 3-D coding algorithms have been considered.
The benchmark for the 3-D case is the 3-D generalization of
the well known EZW coding algorithm [4]. Because of the in-
terband relationship among the coefficients within the subband
tree, EZW-3-D does not allow 3-D/2-D functionalities. In fact,
the parent-children relationship exploited for coding prevents
the independent access to the coefficients of different subbands.
The MLZC system has been analyzed by determining the loss-
less rate corresponding to the complete set of contexts in each
working mode. As was explained in Section V-B, the 3-D spa-
tial supports for the conditioning terms result from the extension
of one of the most performant bi-dimensional configurations to
the adjacent planes along theaxis. The context that has been
chosen for the definition of the 3-D conditioning terms is the
(060). Indeed, results show that it is among the three most per-
formant 2-D contexts on all the datasets in LPL-PROG as well

Fig. 12. Lossless rates as a function of the conditioning terms for DSR. No
interband conditioning has been applied (NP). The LPL-PROG mode enables
2-D decoding while allowing progressiveness by quality on the 2-D images.
Due to the markers added to the codestream, its performances are in between
the G-PROG and LPL modes.

as LPL mode. Fig. 12 shows the lossless rate as a function of the
spatial conditioning terms (i.e., without interband conditioning)
for DSR. As expected, the best performances in terms of loss-
less rate are obtained in the G-PROG mode. As it is the case for
EZW-3-D, the G-PROG mode does not allow 2-D decoding. In
the LPL and LPL-PROG modes, such a functionality is enabled
at the expense of coding efficiency, which decreases because
of the additional information to be encoded to enable random
access.

One of the constraints posed by 2-D decoding is that no inter-
band conditioning can be used. Even though the exploitation of
the information about the significance of the parent within the
subband hierarchy can be fruitful in some cases, the compres-
sion performances are not much affected by such a limitation.
For example, Fig. 13 illustrates the impact of interband condi-
tioning on the G-PROG and LPL-PROG modes for DSR. In the
G-PROG mode, the lossless rate is slightly improved for 2-D
spatial conditioning, while it is basically left unchanged for 3-D
contexts. Conversely, in the LPL-PROG mode performance is
slightly degraded. This is related to the sparseness of the sam-
ples in the conditioning space. Due to the smoothness along the

axis, the exploitation of the significance state of the neigh-
boring voxels is fruitful for entropy coding up to a limit where
the dimension of the conditioning space becomes so large that
the available samples are not sufficient to be representative of
the statistics of the symbols. The point where such a critical con-
dition is reached depends on the characteristics of the dataset
and, in particular, on its size. In general, larger volumes take
advantage of wider spatial supports and interband conditioning.
The observed dependency of the lossless rate on the design pa-
rameters of the conditioning terms (i.e., the spatial support and
the use of interband conditioning) also applies to the bi-dimen-
sional version of the MLZC algorithm, labeled as 2-D-PROG.
Again, the efficiency of the entropy coding increases with the
size of the spatial support up to a limit where the sparseness of
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Fig. 13. Lossless rates for DSR. Impact of interband conditioning. The
G-PROG and LPL-PROG modes are compared. Continuous line: without
interband conditioning (NP); dotted line: with interband conditioning.

Fig. 14. Lossless rates for DSR set with the PROG-2-D algorithm. Impact of
interband conditioning.

the conditioning space does not allow an adequate representa-
tion of the statistics of the symbols to be encoded. Fig. 14 gives
an example. For each context, the lossless rate has been aver-
aged over the entire set of 2-D images of the volume. The (060)
and (070) spatial supports lead to the highest compression ra-
tios. However, the impact of the conditioning term is not very
sensible (about 1.2% of the minimum rate).

The bench-mark for 2-D systems is the new coding standard
for still images JPEG2000 [15], [28]. JPEG2000 has been
designed to overcome some of the limitations of JPEG [29]
and supports a wide variety of features. Among others are im-
proved compression efficiency, lossy to lossless performances,
scalability (by quality and by resolution) and region of interest
(ROI)-based functionalities. As MLZC and EZW-3-D, it is
wavelet-based and the DWT is implemented by the lifting steps
scheme. Fig. 15 compares the performance of the different
2-D algorithms for DSR. In this case, the 2-D-PROG mode

Fig. 15. Performance of 2-D algorithms on DSR dataset. The lossless rate of
each 2-D image is represented as a function of its position along thez axis.
Continuous line: 2-D-PROG; dashed line: JPEG2000; dash-dot line: JPEG-LS.
The lossless rate provided by the MLZC algorithm in the LPL modality is 3.06
bit/voxel.

outperforms both JPEG2000 and JPEG-LS. Fig. 16 shows the
resulting lossless rate as a function of the image index for the
three datasets. The coding parameters, namely the filter used
and the number of levels of decomposition, are the same as for
the other methods. For DSR [Fig. 16(a)] the curve is quite flat
and the average compression ratio is quite high (about 2.2),
indicating that all the images are equally easy to code. In the
case of MRI [Fig. 16(b)], the shape of the curve reflects the
trend of the number of “nonbackground” pixels of the images
with the position along the axis. Accordingly, the central
images are encoded at a higher rate than the boundary ones.
The oscillatory trend of MR-MRI [Fig. 16(c)] is probably due
to preprocessing. Finally, the slope of the line for ANGIO
[Fig. 16(d)] data is due to the increasing number of visible
vessels due to the flow of the contrast medium which augments
the contrast reducing the efficiency of the coder. The average
compression ratio for these last two cases is about 1.8.

Table IV summarizes the performance of the different algo-
rithms and working modes. The (060) and (160) contexts were
chosen as references, and no interband conditioning was used.
As was the case for JPEG2000, the data concerning the 2-D
algorithms were obtained by running them on the whole set
of 2-D images and taking the average of the resulting set of
lossless rates. For the old JPEG standard (JPEG-LS), all of the
seven available prediction modes were tested and the one pro-
viding the best performance (corresponding to for all
the datasets) was retained. As it was reasonable to expect, the
coding gain provided by the 3-D over the 2-D systems depends
on the amount of correlation and smoothness along theaxis.
Accordingly, it is quite pronounced for DSR and MR-MRI, for
which the LPL mode leads to a rate saving of about 16%, re-
spectively, 33% over JPEG2000, while it is lower for both MRI
and ANGIO. For MR-MRI some results are available in the lit-
erature. We refer here to those presented in [5]. The first one was
obtained for and using the integer version of the 53
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Fig. 16. Lossless rates obtained by applying JPEG2000 standard to (a) DSR, (b) MRI (c) MR-MRI and (d) ANGIO datasets.

TABLE IV
LOSSLESSPERFORMANCES(BIT/VOXEL) WITH 5� 3 FILTER. THE DECOMPOSITIONDEPTH ISL = 4 FOR DSR, MRIAND MR-MRI, AND L = 3 FOR ANGIO.

THE TWO VALUES CORRESPOND TO THECONTEXTS (060) AND (160) FOR EACH DATASET. NO INTERBAND CONDITIONING IS USED.
THE LAST COLUMN IS THE PERCENTAGE OFRATE SAVING PROVIDED BY MLZC-LPL OVER JPEG2000.

filter. The second was based on a two levels integer transform
with the ( , 1) filter on 16 slice coding units, and the com-
pression efficiency data were averaged over the volume. The
coding scheme — 3-D CB-EZW — was a version of EZW-3-D
exploiting context modeling. The corresponding lossless rates
were 2.285 and 2.195 bit/voxel. The best MLZC mode — the

G-PROG without interband conditioning and context (370) —
results in 2.143 bit/voxel.

The case of MRI is particularly interesting and deserves
further comments. The majority of the voxels (about 80%)
represent a “nondiagnostically relevant” information, i.e.,
the “background.” This makes it particularly suitable for
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Fig. 17. Performances in lossy regime of LPL-PROG and 2-D-PROG on MRI. (a) PSNR as a function of the image index (z coordinate); each image has been
independently decoded at 0.5 bit/pixel. (b) PSNR as a function of the bitrate for images 40 and 41 of the dataset.

object-based coding: the object of interest (usually called ROI)
is encoded independently and with highest priority than the
rest of the image. In the framework of ROI-based coding, the
weight assigned to a voxel depends on its semantics, which
is assumed to be the criterion for the judicious allocation of
the available resources (e.g., bit-budget, bandwidth). In this
sense, the improvement in coding efficiency is related to the
prioritization of the information to be transmitted. An exten-
sion of 3-D/2-D MLZC featuring ROI-based functionalities is
currently under development. It will allow random access to
any object of any 2-D image of the dataset at the desired up to
lossless quality [7].

The best compression performances for ANGIO are obtained
by JPEG-LS. As mentioned above, such a dataset is not suitable
for wavelet-based coding, so that other algorithms can easily be
more effective. Nevertheless, the LPL method provides an im-
provement of about 5% over JPEG2000. The 3-D encoding/2-D
decoding approach can thus be considered as a good tradeoff be-
tween compression efficiency and the availability of higher level
functionalities which are not available with JPEG-LS. Among
these are quality scalability and both lossy and lossless represen-
tations of the encoded information within the same codestream.

The evaluation of the performance in lossy regime was out
of the scope of this paper. The observed oscillatory trend of
the PSNR along the coordinate axis entails the analysis of both
the rounding noise implied by integer lifting [18] and the quan-
tization noise. Fig. 17 gives an example. After encoding the
volume in the LPL-PROG mode, every image of the dataset has
been independently decoded at the resolution of 0.5 bit/pixel.
Fig. 17(a) compares the corresponding PSNR to that obtained
by separately encoding and decoding each image with the 2-D
version of the algorithm (2-D-PROG) at the same rate. It is im-
portant to notice that the control over the decoding bitrate on the
single 2-D images is only possible when they are decoded one
by one. On average, the 3-D method outperforms the 2-D coun-
terpart on the central portion of the dataset (images 20–100),
which are not dominated by the background. In this case, the

oscillation has period one, namely every other image has better
quality. This makes the improvement in image quality provided
by the 3-D system dependent on the position of the image within
the dataset. Fig. 17(b) shows the PSNR for images of index 40
and 41 as a function of the decoding rate. The maximum and
mean increase in the PSNR are about 4.7 and 2.7 dB for image
40, and about 0.8 and 2.7 for image 41, respectively. As men-
tioned above, this is due to both the rounding and the quanti-
zation noise. We are currently investigating this issue to extend
the model proposed in [18] to the 3-D case and define a quan-
tization policy ensuring a more uniform decoding quality, for a
given rate, over the entire volume.

The other parameter to be considered for the evaluation of
the performances of the 3-D/2-D MLZC system is the decoding
delay, which entails the analysis of the complexity. In this paper,
we did not address the problem of computational efficiency
and no optimization was performed. Consequently, the decoding
time is suboptimal and as such it is not meaningful neither rep-
resentative of what it would be in the optimized version. As a
general comment, even though a more detailed analysis of the
complexity is required for the evaluation of the global perfor-
mance of the system, there is clearly a tradeoff between the im-
provement in compression efficiency and the increase in com-
plexity when switching from 2-D to 3-D systems. Nevertheless,
this does not compromise their usefulness. What is important is
theabsolutedecoding time, namely the time the user has to wait
to access the decoded image, rather than therelative increase
with respect to the 2-D counterpart. We expect our system being
able to reach a decoding time of less than one second per image
after optimization. Last but not least, large PACS can easily in-
corporate high processing power (e.g., a multiprocessor archi-
tecture) at a price that is negligible with respect to the whole
cost of a PACS. Therefore we consider that the complexity of
our method is not a major issue for real implementations.

In our opinion, the proposed approach to coding has
a high potential, especially if combined with ROI-based
functionalities.
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Fig. 18. Generalized projection of the subband samplea(l; k) in the approximation band of levell, to the next coarser scale subbands. Depending onk being
even or odd, the sample to recover isa (l + 1; k ) or d (l + 1; k ), respectively. Accordingly,� = a in the first case, and� = b in the second.

VIII. C ONCLUSION

We presented a wavelet-based coding system featuring 3-D
encoding/2-D decoding capabilities. In this way, the improve-
ment in coding efficiency provided by 3-D algorithms can be
obtained without sacrificing the fast access to single 2-D im-
ages. Data decorrelation is performed by a fully 3-D-DWT. The
implementation of the transform by the lifting scheme enables
lossless functionalities, permits the in-place implementation,
minimizing the run-time memory allocation, and reduces the
computational complexity up to a factor 4. The set of subband
images needed to reconstruct a given 2-D image depends on the
length of the synthesis filters and the number of decomposition
levels. The 2-D decoding mode is obtained by independently
encoding each subband image. The amount of overloading of
the bitstream in the different working modalities depends on
many factors, like the dynamic range of the transformed coeffi-
cients, the decomposition depth, the statistics of the source and
the availability of the PSNR scalability. The performance of the
system was compared to that of other state-of-the-art 2-D and
3-D algorithms, including JPEG2000.

Results show that 3-D/2-D MLZC has an high potential, espe-
cially in the framework of the emerging model-based approach
to coding. Accordingly, we are improving our system by gener-
alizing it for object-based processing.

APPENDIX I
POINT-WISE IDWT

In what follows, we provide a detailed description of the pro-
cedure followed to determine the set of wavelet coefficients
needed for PW-IDWT. We call it generalized projection (GP)
of the considered sample into the transformed domain.

Let be the GP of in subband ( ). For gener-
ality, we state the problem as follows: given a wavelet sample

at position in subband ( ) (i.e., the approximation

(a) (b)

Fig. 19. Notations for the left end of GP during its evaluation:b̂ is for
the upper branch, and̂b for the lower branch,i being the index of the
considered step. (a):t-step; (b)s-step.

subband at level), we want to determine its GP at the next
coarser level . As depends
on being even or odd, we introduce an additional indexto
make the distinction. The set of lifting steps involved in the syn-
thesis of an even sample is indeed different from the set of those
necessary for an odd sample. Then,
indicates the GP in subband ( ) of a sample in subband
( ) of even ( ) or odd ( ) position, respectively, as
illustrated in Fig. 18. In the figure, the first filtering step of the
lifting chain is assumed to be of type, as usually is. This cor-
responds to setting in (3). We call ( )
the sample to recover at the end of the synthesis chain for
even (odd). The GP is determined by identifying the positions
of its ends, and , respectively. Here, we subtend the in-
dexes and for simplicity of notations. Let then ( ) be the
causal (anti-causal) length of the lifting filter, where
identifies the filter type. Finally, let ( ) identify the
border samplesbeforethe step in the synthesis chain, and
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( ) the same quantityafter , as shown in Fig. 19 for the
case . The following updating rule holds [see Fig. 19(a)
and (b)]:

(17)

(18)

(19)

(20)

(As these rules refer to a generic step, the the index has
been omitted). If one prediction step is considered, the up-
dating rules become

(21)

(22)

(23)

(24)

If the total number of lifting steps is , then the ends of
are

(25)

Given , namely the GP of the sample , the
GP of the set of samples { } can be ob-
tained as

(26)

where is the GP of the signal sample in the ap-
proximation subband of level, which is the set where
lives. The GP of is thus determined iteratively, climbing
back the synthesis chain.

APPENDIX II
BITSTREAM OVERLOADING

There are two factors contributing to the bitstream over-
loading affecting the LPL-based modalities, both strictly related
to the architecture of the entropy coder. The arithmetic coder we
have adopted uses thebyteas information unit for writing to or
reading from the bitstream file. The string of bits corresponding
to a sequence of symbols is temporarily stored into a buffer,
whose most significant byte is written into the bitstream file
once it has been completely filled. The one-byte length string
can thus be considered as the elementary bitstream unit. In
what follows, we will call this elementary blockcoding unit.
Each coding unit thus represents asetof symbols, which cannot
be accessed (i.e., decoded) independently. This implies that
in order to independently encode/decode two sets of symbols
it is necessary to follow a special procedure to generate two
disjoint segments within the same bitstream which can then be
accessed independently. This consists essentially in emptying
the buffer and resetting all the internal variables of the entropy
coder. We define the sequence of bytes consequently written
in the bitstream file asflush bytes. This is not yet enough for

partitioning the bitstream into semantically disjoint sets. Some
special symbols ormarkers, must be introduced, which can
be unambiguously interpreted asseparatorsby the decoder.
Since the whole set of values 0-255 attainable by the coding
unit is used by the arithmetic coder, no special characters were
a priori available to be used as markers. In order to overcome
this problem, a special role has been assigned to one character
of the set, together with an additional syntactic rule. Let
be the chosen symbol. The rule can be stated as follows: the
symbol is replaced by a sequence of two symbols depending
on its semantic. The additional symbol would bein normal
working condition, and when used to build the marker. In
the specific: , , and .

The need of markers affects the coding system performance
both directly, as additional information to be written into the bit-
stream, and indirectly, degrading the efficiency of the entropy
coder by increasing the number of information units associated
to symbol . As the number of separators is a function of the
volume size and the dynamic range of the transformed coeffi-
cients, it can be evaluated after the transformation has been per-
formed. Conversely, neither the number of specialsymbols
nor the number of flush bytes can be calculateda priori, because
they depend on the statistics of the symbols to be encoded. We
refer to [21] for more details.
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