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Digital Image Definitions 

A digital image a[m, n] described in a 2D discrete space is derived from an analog image a(x, y) in a 
2D continuous space through a sampling process that is frequently referred to as digitization. The 
mathematics of that sampling process will be described in Section 5. For now we will look at some 
basic definitions associated with the digital image. The effect of digitization is shown in Figure 1.  
The 2D continuous image a(x, y) is divided into N rows and M columns. The intersection of a row and 
a column is termed a pixel . The value assigned to the integer coordinates [m, n] with {m=0,1,2,...,M-
1} and {n=0,1,2,...,N-1} is a[m, n]. In fact, in most cases a(x, y)--which we might consider to be the 
physical signal that impinges on the face of a 2D sensor--is actually a function of many variables 

including depth (z), color ( ), and time (t ). Unless otherwise stated, we will consider the case of 
2D, monochromatic, static images in this chapter.  

 
Figure 1: Digitization of a continuous image. The pixel at coordinates [m=10, n=3] has the integer 
brightness value 110.  
 
The image shown in Figure 1 has been divided into N = 16 rows and M = 16 columns. The value 
assigned to every pixel is the average brightness in the pixel rounded to the nearest integer value. 
The process of representing the amplitude of the 2D signal at a given coordinate as an integer value 
with L different gray levels is usually referred to as amplitude quantization or simply quantization .  

Common Values 

There are standard values for the various parameters encountered in digital image processing. These 
values can be caused by video standards, by algorithmic requirements, or by the desire to keep 
digital circuitry simple. Table 1 gives some commonly encountered values.  

Parameter  Symbol  Typical values  

Rows  N  256,512,525,625,1024,1035  

Columns  M  256,512,768,1024,1320  

Gray Levels  L  2,64,256,1024,4096,16384  

Table 1: Common values of digital image parameters 
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Quite frequently we see cases of M=N=2K where {K = 8,9,10}. This can be motivated by digital 
circuitry or by the use of certain algorithms such as the (fast) Fourier transform (see Section 3.3).  
The number of distinct gray levels is usually a power of 2, that is, L=2B where B is the number of bits 
in the binary representation of the brightness levels. When B>1 we speak of a gray-level image ; when 
B=1 we speak of a binary image . In a binary image there are just two gray levels which can be 
referred to, for example, as "black" and "white" or "0" and "1".  

Characteristics of Image Operations 

There is a variety of ways to classify and characterize image operations. The reason for doing so is to 
understand what type of results we might expect to achieve with a given type of operation or what 
might be the computational burden associated with a given operation.  

Types of operations 

The types of operations that can be applied to digital images to transform an input image a[m, n] 
into an output image b[m, n] (or another representation) can be classified into three categories as 
shown in Table 2.  

Operation  Characterization  
Generic 
Complexity/Pixel  

* Point  
- The output value at a specific coordinate is dependent only on 
the input value at that same coordinate.  

Constant  

* Local  
- The output value at a specific coordinate is dependent on the 
input values in the neighborhood of that same coordinate.  

P2  

* Global  
- The output value at a specific coordinate is dependent on all the 
values in the input image.  

N2  

Table 2: Types of image operations. 
 
Image size = N x N; neighborhood size = P x P. Note that the complexity is specified in operations per 
pixel . This is shown graphically in Figure 2.  
 

 
Figure 2: Illustration of various types of image operations 
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Types of neighborhoods 

Neighborhood operations play a key role in modern digital image processing. It is therefore important 
to understand how images can be sampled and how that relates to the various neighborhoods that 
can be used to process an image.  
* Rectangular sampling - In most cases, images are sampled by laying a rectangular grid over an 
image as illustrated in Figure 1. This results in the type of sampling shown in Figure 3ab.  
* Hexagonal sampling - An alternative sampling scheme is shown in Figure 3c and is termed hexagonal 
sampling.  
Both sampling schemes have been studied extensively and both represent a possible periodic tiling of 
the continuous image space. We will restrict our attention, however, to only rectangular sampling, 
as it remains, due to hardware and software considerations, the method of choice.  
Local operations produce an output pixel value b[m=mo, n=no] based upon the pixel values in the 
neighborhood of a[m=mo, n=no]. Some of the most common neighborhoods are the 4-connected 
neighborhood and the 8-connected neighborhood in the case of rectangular sampling and the 6-
connected neighborhood in the case of hexagonal sampling illustrated in Figure 3.  

 
Figure 3a Figure 3b Figure 3c 

 
Rectangular sampling Rectangular sampling hexagonal sampling 4-connected 8-connected 6-
connected 
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Video Parameters 

We do not propose to describe the processing of dynamically changing images in this introduction. It 
is appropriate--given that many static images are derived from video cameras and frame grabbers-- 
to mention the standards that are associated with the three standard video schemes that are 
currently in worldwide use - NTSC, PAL, and SECAM. This information is summarized in Table 3.  

Standard  NTSC  PAL  SECAM  

Property      

Images / second  29.97  25  25  

Ms / image  33.37  40.0  40.0  

Lines / image  525  625  625  

(horiz./vert.) = Aspect ratio  4:3  4:3  4:3  

Interlace  2:1  2:1  2:1  

Us / line  63.56  64.00  64.00  

Table 3: Standard video parameters 
 

In an interlaced image the odd numbered lines (1,3,5...) are scanned in half of the allotted time 
(e.g. 20 ms in PAL) and the even numbered lines (2,4,6...) are scanned in the remaining half. The 
image display must be coordinated with this scanning format. (See Section 8.2.) The reason for 
interlacing the scan lines of a video image is to reduce the perception of flicker in a displayed image. 
If one is planning to use images that have been scanned from an interlaced video source, it is 
important to know if the two half-images have been appropriately "shuffled" by the digitization 
hardware or if that should be implemented in software. Further, the analysis of moving objects 
requires special care with interlaced video to avoid "zigzag" edges.  
The number of rows (N) from a video source generally corresponds one-to-one with lines in the video 
image. The number of columns, however, depends on the nature of the electronics that is used to 
digitize the image. Different frame grabbers for the same video camera might produce M = 384, 512, 
or 768 columns (pixels) per line.  
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Image Sampling 

Converting from a continuous image a(x, y) to its digital representation b[m, n] requires the process 
of sampling. In the ideal sampling system a(x, y) is multiplied by an ideal 2D impulse train:  

 
 
Where Xo and Yo are the sampling distances or intervals, d(*,*) is the ideal impulse function, and we 
have used equation. (At some point, of course, the impulse function d(x, y) is converted to the 
discrete impulse function d[m, n].)  
Square sampling  implies that Xo = Yo.  
 
Sampling with an impulse function corresponds to sampling with an infinitesimally small point. This, 
however, does not correspond to the usual situation as illustrated in Figure 1. To take the effects of 
a finite  sampling aperture p(x, y) into account, we can modify the sampling model as follows:  

 
 
The combined effect of the aperture and sampling are best understood by examining the Fourier 
domain representation.  

 
 

Where s = 2 /Xo is the sampling frequency in the x direction and s = 2 /Yo is the sampling 
frequency in the y direction. The aperture p(x, y) is frequently square, circular, or Gaussian with the 

associated P( , ). (See Table 4.) The periodic nature of the spectrum, described in from equation.  

Sampling Density for Image Processing 

Sampling aperture  
To prevent the possible aliasing (overlapping) of spectral terms that is inherent in equation two 
conditions must hold:  
 
* Bandlimited A(u,v) -  

 
 
* Nyquist sampling frequency -  

 
Where uc and vc are the cutoff  frequencies in the x and y direction, respectively. Images that are 
acquired through lenses that are circularly symmetric, aberration-free, and diffraction-limited will, 
in general, be band limited. The lens acts as a low pass filter with a cutoff frequency in the 
frequency domain (eq. ) given by:  

http://www.ph.tn.tudelft.nl/Courses/FIP/frames/#Heading41
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Where NA is the numerical aperture of the lens and is the shortest wavelength of light used with 
the lens. If the lens does not meet one or more of these assumptions then it will still be band limited 
but at lower cutoff frequencies than those given in equation. When working with the F-number (F) of 
the optics instead of the NA and in air (with index of  refraction  = 1.0), equation becomes:  

 

Sampling aperture  

The aperture p(x, y) described above will have only a marginal effect on the final signal if the two 
conditions equation and are satisfied. Given, for example, the distance between samples Xo equals Yo 
and a sampling aperture that is not wider than Xo, the effect on the overall spectrum-due to the A(u, 
v)P(u, v) behavior implied by equation-is illustrated in Figure 16 for square and Gaussian apertures.  
The spectra are evaluated along one axis of the 2D Fourier transform. The Gaussian aperture in 
Figure 16 has a width such that the sampling interval Xo contains +/-3  (99.7%) of the Gaussian. The 
rectangular apertures have a width such that one occupies 95% of the sampling interval and the other 
occupies 50% of the sampling interval. The 95% width translates to a fill  factor  of 90% and the 50% 
width to a fill  factor  of 25%. The fill  factor  is discussed in Section 7.5.2.  

 
Figure 16: Aperture spectra P(u,v=0) for frequencies up to half the Nyquist frequency. For 

explanation of "fill" see text. 
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Derivative-based Operations 

Just as smoothing is a fundamental operation in image processing so is the ability to take one or 
more spatial derivatives of the image.  
The fundamental problem is that, according to the mathematical definition of a derivative, this 
cannot be done.  
A digitized image is not a continuous function a(x, y) of the spatial variables but rather a 
discrete function a[m, n] of the integer spatial coordinates. As a result the algorithms we will 
present can only be seen as approximations  to the true spatial derivatives of the original spatially 
continuous image. 
Further, as we can see from the Fourier property in equation, taking a derivative multiplies the 
signal spectrum by either u or v. This means that high frequency noise will be emphasized in the 
resulting image. The general solution to this problem is to combine the derivative operation with one 
that suppresses high frequency noise, in short, smoothing in combination with the desired derivative 
operation. 

First Derivatives 

As an image is a function of two (or more) variables it is necessary to define the direction in which 
the derivative is taken. For the two-dimensional case we have the horizontal direction, the vertical 
direction, or an arbitrary direction, which can be considered as a combination of the two. If we use 
hx to denote a horizontal derivative filter (matrix), hy to denote a vertical derivative filter (matrix), 

and h  to denote the arbitrary angle derivative filter (matrix), then: 

 
 

* Gradient filters  - It is also possible to generate a vector derivative description as the gradient,  
a[m, n], of an image: 

 

Where are unit vectors in the horizontal and vertical direction respectively.  
 
This leads to two descriptions: 

Gradient magnitude -  
and 

Gradient direction -  
 
The gradient magnitude is sometimes approximated by: 

Approx. Gradient magnitude -  

 
The final results of these calculations depend strongly on the choices of hx and hy. A number of 
possible choices for (hx, hy) will now be described. 
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* Basic derivative filters - These filters are specified by: 

 
 
Where "t" denotes matrix transpose. These two filters differ significantly in their Fourier magnitude 

and Fourier phase characteristics. For the frequency range 0 <= <= , these are given by: 

 
 

The second form (ii ) gives suppression of high frequency terms (  ~ ) while the first form (i) does 
not. The first form leads to a phase shift; the second form does not. 
 
* Prewitt gradient filters - These filters are specified by: 

 
 
Both hx and hy are separable. Beyond the computational implications are the implications for the 
analysis of the filter. Each filter takes the derivative in one direction using eq. ii  and smoothes in the 
orthogonal direction using a one-dimensional version of a uniform  filter as described in Section 9.4.1. 
 
* Sobel gradient filters - These filters are specified by: 

 
 
Again, hx and hy are separable. Each filter takes the derivative in one direction using eq. ii  and 
smoothes in the orthogonal direction using a one-dimensional version of a triangular  filter as 
described in Section 9.4.1. 
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* Alternative gradient filters - The variety of techniques available from one-dimensional signal 
processing for the design of digital filters offers us powerful tools for designing one-dimensional 
versions of hx and hy. Using the Parks-McClellan filter design algorithm, for example, we can choose 
the frequency bands where we want the derivative to be taken and the frequency bands where we 
want the noise to be suppressed. The algorithm will then produce a real, odd filter with a minimum 
length that meets the specifications. 
 
As an example, if we want a filter that has derivative characteristics in a pass band (with weight 1.0) 

in the frequency range 0.0 <= <= 0.3  and a stop band (with weight 3.0) in the range 0.32  <= 
<= , then the algorithm produces the following optimized seven sample filter: 

 
 
The gradient can then be calculated as in equation 
 
* Gaussian gradient filters - In modern digital image processing one of the most common techniques 
is to use a Gaussian filter (see Section 9.4.1) to accomplish the required smoothing and one of the 
derivatives listed in eq. . Thus, we might first apply the recursive Gaussian in eq. followed by eq. ii  
to achieve the desired, smoothed derivative filters hx and hy. Further, for computational efficiency, 
we can combine these two steps as: 

 
Where the various coefficients are defined in eq. . The first (forward) equation is applied from n = 0 
up to n = N - 1 while the second (backward) equation is applied from n = N - 1 down to n = 0. 
 
* Summary - Examples of the effect of various derivative  algorithms  on a noisy version of Figure 30a 
(SNR = 29 dB) are shown in Figure 31a-c. The effect of various magnitude  gradient  algorithms  on 
Figure 30a is shown in Figure 32a-c. After processing, all images are contrast stretched as in eq. for 
display purposes. 

 
(a) (b) (c) Simple Derivative - eq. ii  Sobel - eq. Gaussian ( =1.5) & eq. ii  
Figure 31: Application of various algorithms for hx - the horizontal derivative. 
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(a) (b) (c) Simple Derivative - eq. ii  Sobel - eq. Gaussian ( =1.5) & eq. ii  

Figure 32: Various algorithms for the magnitude gradient, | a|. 
The magnitude gradient takes on large values where there are strong edges in the image. 
Appropriate choice of in the Gaussian-based derivative (Figure 31c) or gradient (Figure 32c) 
permits computation of virtually any of the other forms - simple, Prewitt, Sobel, etc. In that sense, 
the Gaussian derivative represents a superset of derivative filters. 

Second Derivatives 

It is, of course, possible to compute higher-order derivatives of functions of two variables. In image 

processing, as we shall see in Sections 10.2.1 and 10.3.2, the second derivatives or Laplacian play an 

important role.  

The Laplacian is defined as: 

 
 
Where h2x and h2y are second derivative filters. In the frequency domain we have for the  
 
Laplacian filter (from eq. ): 

 
The transfer function of a Laplacian corresponds to a parabola (u,v) = -(u2 + v2). 
 
* Basic second derivative fil ter - This filter is specified by: 

 
and the frequency spectrum of this filter, in each direction, is given by: 

 
 

Over the frequency range -  <= <= . The two, one-dimensional filters can be used in the manner 
suggested by eq. or combined into one, two-dimensional filter as: 

 
and used as in eq. . 
 
* Frequency domain Laplacian - This filter is the implementation of the general recipe given in eq. 
and for the Laplacian filter takes the form: 

 
 
* Gaussian second derivative filter - This is the straightforward extension of the Gaussian first 
derivative filter described above and can be applied independently in each dimension. We first apply 
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Gaussian smoothing with a chosen on the basis of the problem specification. We then apply the 
desired second derivative filter eq. or eq. . Again there is the choice among the various Gaussian 
smoothing algorithms. 
For efficiency, we can use the recursive implementation and combine the two steps--smoothing and 
derivative operation--as follows: 

 
 
Where the various coefficients are defined in eq. . Again, the first (forward) equation is applied from 
n = 0 up to n = N - 1 while the second (backward) equation is applied from n = N - 1 down to n = 0. 
 
* Alternative Laplacian filters - Again one-dimensional digital filter design techniques offer us 
powerful methods to create filters that are optimized for a specific problem. Using the Parks-
McClellan design algorithm, we can choose the frequency bands where we want the second 
derivative to be taken and the frequency bands where we want the noise to be suppressed. The 
algorithm will then produce a real, even filter with a minimum length that meets the specifications. 
As an example, if we want a filter that has second derivative characteristics in a pass band (with 

weight 1.0) in the frequency range 0.0 <= <= 0.3  and a stop band (with weight 3.0) in the range 

0.32  <= <= , then the algorithm produces the following optimized seven sample filter: 

 
The Laplacian can then be calculated as in eq. 
 
* SDGD filter - A filter that is especially useful in edge finding and object measurement is the 
Second-Derivative -in-the-Gradient -Direction (SDGD) filter. This filter uses five partial derivatives: 

 
Note that Axy = Ayx which accounts for the five derivatives. 
This SDGD combines the different partial derivatives as follows: 

 
As one might expect, the large number of derivatives involved in this filter implies that noise 
suppression is important and that Gaussian derivative filters--both first and second order--are highly 
recommended if not required. It is also necessary that the first and second derivative filters have 
essentially the same pass bands and stop bands. This means that if the first derivative filter h1x is 
given by [1 0 -1] (eq. ii ) then the second derivative filter should be given by h1x h1x = h2x = [1 0 -2 0 
1]. 
 
* Summary - The effects of the various second derivative filters are illustrated in Figure 33a-e. All 
images were contrast stretched for display purposes using eq. and the parameters 1% and 99%. 
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(a) (b) (c) Laplacian - eq. Fourier parabola - eq. Gaussian ( =1.0) & eq. 

(d) (e) "Designer" - eq. SDGD ( =1.0) - eq. 
Figure 33: Various algorithms for the Laplacian and Laplacian-related filters. 
Other Filters 
An infinite number of filters, both linear and non-linear, are possible for image processing. It is 
therefore impossible to describe more than the basic types in this section. The description of others 
can be found be in the reference literature (see Section 11) as well as in the applications literature. 
It is important to use a small consistent set of test images that are relevant to the application area 
to understand the effect of a given filter or class of filters. The effect of filters on images can be 
frequently understood by the use of images that have pronounced regions of varying sizes to visualize 
the effect on edges or by the use of test patterns such as sinusoidal sweeps to visualize the effects in 
the frequency domain. The former have been used above (Figures 21, 23, and 30-33) and the latter 
are demonstrated below in Figure 34. 

 
(a) Lowpass filter (b) Bandpass filter (c) ighpass filter 
Figure 34: Various convolution algorithms applied to sinusoidal test image. 
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Segmentation 

In the analysis of the objects in images it is essential that we can distinguish between the objects of 
interest and "the rest." This latter group is also referred to as the background. The techniques that 
are used to find the objects of interest are usually referred to as segmentation  techniques  - 
segmenting the foreground from background. In this section we will two of the most common 
techniques, thresholding  and edge finding .  And we will present techniques for improving the quality 
of the segmentation result. It is important to understand that:  
* There is no universally applicable segmentation technique that will work for all images, and,  
* No segmentation technique is perfect.  

Thresholding 

This technique is based upon a simple concept. A parameter called the brightness threshold is 
chosen and applied to the image a[m,n] as follows:  

 
 
This version of the algorithm assumes that we are interested in light objects on a dark background. 
For dark objects on a light background we would use:  

 
 
The output is the label "object" or "background" which, due to its dichotomous nature, can be 
represented as a Boolean variable "1" or "0". In principle, the test condition could be based upon 

some other property than simple brightness (for example, If  (Redness {a [m, n]} >= red), but the 
concept is clear.  

The central question in thresholding then becomes: how do we choose the threshold ? While there 
is no universal procedure for threshold selection that is guaranteed to work on all images, there are 
a variety of alternatives.  
 
* Fixed threshold - One alternative is to use a threshold that is chosen independently of the image 
data. If it is known that one is dealing with very high-contrast images where the objects are very 
dark and the background is homogeneous (Section 10.1) and very light, then a constant threshold of 
128 on a scale of 0 to 255 might be sufficiently accurate. By accuracy we mean that the number of 
falsely classified pixels should be kept to a minimum. 
 
* Histogram -derived thresholds - In most cases the threshold is chosen from the brightness 
histogram of the region or image that we wish to segment. (See Sections 3.5.2 and 9.1.) An image 
and its associated brightness histogram are shown in Figure 51.  
A variety of techniques have been devised to automatically choose a threshold starting from the 
gray-value histogram, {h [b] | b = 0, 1, ..., 2B-1}. Some of the most common ones are presented 
below. Many of these algorithms can benefit from a smoothing of the raw histogram data to remove 
small fluctuations but the smoothing algorithm must not shift the peak positions. This translates into 
a zero-phase smoothing algorithm given below where typical values for W are 3 or 5:  
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(a) Image to be thresholded  (b) Brightness histogram of the image 

 

Figure 51: Pixels below the threshold (a [m,n] < ) will be labeled as object pixels; those above the 
threshold will be labeled as background pixels.  
 
* Isodata algorithm - This iterative technique for choosing a threshold was developed by Ridler and 
Calvard. The histogram is initially segmented into two parts using a starting threshold value such as 

0 = 2B-1, half the maximum dynamic range. The sample mean (mf, 0 ) of the gray values associated 
with the foreground pixels and the sample mean (mb, 0) of the gray values associated with the 

background pixels are computed. A new threshold value 1 is now computed as the average of these 
two sample means. The process is repeated, based upon the new threshold, until the threshold value 
does not change any more. In formula:  

 
 
* Background -symmetry algorithm - This technique assumes a distinct and dominant peak for the 
background that is symmetric about its maximum. The technique can benefit from smoothing as 
described in eq. The maximum peak (maxp) is found by searching for the maximum value in the 
histogram. The algorithm then searches on the non-object pixel side  of that maximum to find a p% 
point as in eq. (39).  
In Figure 51b, where the object pixels are located to the left  of the background peak at brightness 
183, this means searching to the right of that peak to locate, as an example, the 95% value. At this 
brightness value, 5% of the pixels lie to the right  (are above) that value. This occurs at brightness 
216 in Figure 51b. Because of the assumed symmetry, we use as a threshold a displacement to the 
left  of the maximum that is equal to the displacement to the right where the p% is found. For Figure 
51b this means a threshold value given by 183 - (216 - 183) = 150. In formula:  

 
This technique can be adapted easily to the case where we have light objects on a dark, dominant 
background. Further, it can be used if the object peak dominates and we have reason to assume that 
the brightness distribution around the object peak is symmetric. An additional variation on this 
symmetry theme is to use an estimate of the sample standard deviation (s in eq. (37)) based on one 

side of the dominant peak and then use a threshold based on = maxp +/- 1.96s (at the 5% level) or 

= maxp +/- 2.57s (at the 1% level). The choice of "+" or "-" depends on which direction from maxp 
is being defined as the object/background threshold. Should the distributions be approximately 
Gaussian around maxp, then the values 1.96 and 2.57 will, in fact, correspond to the 5% and 1 % 
level.  
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* Triangle algorithm - This technique due to Zack [36] is illustrated in Figure 52. A line is 
constructed between the maximum of the histogram at brightness bmax and the lowest value bmin = 
(p=0)% in the image. The distance d between the line and the histogram h[b] is computed for all 
values of b from b = bmin to b = bmax. The brightness value bo where the distance between h [bo] and 

the line is maximal is the threshold value, that is, = bo. This technique is particularly effective 
when the object pixels produce a weak peak in the histogram.  

 
Figure 52: The triangle algorithm is based on finding the value of b that gives 

the maximum distance d. 

The three procedures described above give the values = 139 for the Isodata algorithm, = 150 for 

the background symmetry algorithm at the 5% level, and = 152 for the triangle algorithm for the 
image in Figure 51a.  
Thresholding does not have to be applied to entire images but can be used on a region-by-region 
basis. Chow and Kaneko developed a variation in which the M x N image is divided into non-
overlapping regions. In each region a threshold is calculated and the resulting threshold values are 
put together (interpolated) to form a thresholding surface for the entire image. The regions should 
be of "reasonable" size so that there are a sufficient number of pixels in each region to make an 
estimate of the histogram and the threshold. The utility of this procedure--like so many others--
depends on the application at hand.  

Edge finding 

Thresholding produces a segmentation that yields all the pixels that, in principle, belong to the 
object or objects of interest in an image. An alternative to this is to find those pixels that belong to 
the borders of the objects. Techniques that are directed to this goal are termed edge-finding 
techniques. From our discussion, in Section 9.6, on mathematical morphology, specifically eqs. And, 
we see that there is an intimate relationship between edges and regions.  
 
* Gradient -based procedure - The central challenge to edge finding techniques is to find procedures 
that produce closed contours around the objects of interest. For objects of particularly high SNR, and 
this can be achieved by calculating the gradient and then using a suitable threshold. This is 
illustrated in Figure 53.  
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(a) SNR = 30 dB (b) SNR = 20 dB 
Figure 53: Edge finding based on the Sobel gradient, eq. (110), combined with the Isodata 
thresholding algorithm eq.  
 
While the technique works well for the 30 dB image in Figure 53a, it fails to provide an accurate 
determination of those pixels associated with the object edges for the 20 dB images in Figure 53b. A 
variety of smoothing techniques as described in Section 9.4 and in eq. can be used to reduce the 
noise effects before the gradient operator is applied.  
 
* Zero-crossing based procedur e - A more modern view to handling the problem of edges in noisy 
images is to use the zero crossings generated in the Laplacian of an image (Section 9.5.2). The 
rationale starts from the model of an ideal edge, a step function that has been blurred by an OTF, 
such as Table 4 T.3 (out-of-focus), T.5 (diffraction-limited), or T.6 (general model) to produce the 
result shown in Figure 54.  

 
Figure 54: Edge finding based on the zero crossing as determined by the second derivative, the 
Laplacian. The curves are not to scale.  
 
The edge location is, according to the model, at that place in the image where the Laplacian changes 
sign, the zero crossing. As the Laplacian operation involves a second derivative, this means a 
potential enhancement of noise in the image at high spatial frequencies; see eq. (114). To prevent 
enhanced noise from dominating the search for zero crossings, a smoothing is necessary.  
 
The appropriate smoothing filter, from among the many possibilities described in Section 9.4, should 
according to Canny have the following properties:  

* In the frequency domain, (u,v) or ( , ), the filter should be as narrow as possible to provide 
suppression of high frequency noise, and;  
* In the spatial domain, (x,y) or [m,n], the filter should be as narrow as possible to provide good 
localization of the edge. A too wide filter generates uncertainty as to precisely where, within the 
filter width, the edge is located.  
 
The smoothing filter that simultaneously satisfies both these properties--minimum bandwidth and 
minimum spatial width--is the Gaussian filter described in Section 9.4. This means that the image 
should be smoothed with a Gaussian of an appropriate followed by application of the Laplacian. In 
formula:  

 
where g2D(x,y) is defined in eq. (93). The derivative operation is linear and shift-invariant as defined 
in eqs. (85) and (86). This means that the order of the operators can be exchanged (eq. (4)) or 
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combined into one single filter (eq. (5)). This second approach leads to the Marr-ildreth formulation 
of the "Laplacian-of-Gaussians" (LoG) filter:  

 
Where  

 
Given the circular symmetry this can also be written as:  

 
This two-dimensional convolution kernel, which is sometimes referred to as a "Mexican hat filter", is 
illustrated in Figure 55.  

 
(a) -LoG(x,y) (b) LoG(r) 

Figure 55: LoG filter with = 1.0. 
 
*PLUS-based procedure - Among the zero crossing procedures for edge detection, perhaps the most 
accurate is the PLUS filter as developed by Verbeek and Van Vliet . The filter is defined, using eqs. 
(121) And (122), as:  

 
Neither the derivation of the PLUS's properties nor an evaluation of its accuracy are within the scope 
of this section. Suffice it to say that, for positively curved edges in gray value images, the Laplacian-
based zero crossing procedure overestimates  the position of the edge and the SDGD-based procedure 
underestimates the position. This is true in both two-dimensional and three-dimensional images with 
an error on the order of ( /R)2 where R is the radius of curvature of the edge. The PLUS operator 
has an error on the order of ( /R)4 if the image is sampled at, at least, 3x the usual Nyquist 
sampling frequency as in eq. (56) or if we choose >= 2.7 and sample at the usual Nyquist 
frequency.  
All of the methods based on zero crossings in the Laplacian must be able to distinguish between zero 
crossings and zero values . While the former represent edge positions, the latter can be generated 
by regions that are no more complex than bilinear surfaces, that is, a(x,y) = a0 + a1*x + a2*y + a3*x*y. 
To distinguish between these two situations, we first find the zero crossing positions and label them 
as "1" and all other pixels as "0". We then multiply the resulting image by a measure of the edge 
strength  at each pixel. There are various measures for the edge strength that is all based on the 
gradient as described in Section 9.5.1 and eq. This last possibility, use of a morphological gradient as 
an edge strength measure, was first described by Lee, aralick, and Shapiro and is particularly 
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effective. After multiplication the image is then thresholded (as above) to produce the final result. 
The procedure is thus as follows:  

 
Figure 56: General strategy for edges based on zero crossings. 

 
The results of these two edge finding techniques based on zero crossings, LoG filtering and PLUS 
filtering, are shown in Figure 57 for images with a 20 dB SNR.  
 

 

a) Image SNR = 20 dB b) LoG filter c) PLUS filter  
 

 
Figure 57: Edge finding using zero crossing algorithms LoG and PLUS. In both algorithms = 1.5.  
Edge finding techniques provide, as the name suggests, an image that contains a collection of edge 
pixels. Should the edge pixels correspond to objects, as opposed to say simple lines in the image, and 
then a region-filling technique such as eq. may be required to provide the complete objects.  

Binary mathematical morphology 

The various algorithms that we have described for mathematical morphology in Section 9.6 can be 
put together to form powerful techniques for the processing of binary images and gray level images. 
As binary images frequently result from segmentation processes on gray level images, the 
morphological processing of the binary result permits the improvement of the segmentation result.  
 
* Salt -or -pepper filtering - Segmentation procedures frequently result in isolated "1" pixels in a "0" 
neighborhood (salt) or isolated "0" pixels in a "1" neighborhood (pepper). The appropriate 
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neighborhood definition must be chosen as in Figure 3. Using the lookup table formulation for 
Boolean operations in a 3 x 3 neighborhood that was described in association with Figure 43, salt  
filtering  and pepper filtering  are straightforward to implement. We weight the different positions in 
the 3 x 3 neighborhood as follows:  

 
For a 3 x 3 window in a[m,n] with values "0" or "1" we then compute:  

 
The result, sum, is a number bounded by 0 <= sum <= 511.  
 
* Salt Filter - The 4-connected and 8-connected versions of this filter are the same and are given by 
the following procedure:  
Compute sum. 
If ((sum == 1) c [m,n] = 0 Else c[m,n] = a[m,n]. 
 
* Pepper Filter - The 4-connected and 8-connected versions of this filter are the following 
procedures:  
4-connected 8-connected i) Compute sum i) Compute sum ii) If ((sum == 170) ii) If ((sum == 510) 
c[m,n] = 1 c[m,n] = 1 Else Else c[m,n] = a[m,n] c[m,n] = a[m,n] 
 
* Isolate objects with holes - To find objects with holes we can use the following procedure, which 
is illustrated in Figure 58.  
 
Segment image to produce binary mask representation. 
Compute skeleton without end pixels - eq. 
Use salt  filter to remove single skeleton pixels. 
Propagate remaining skeleton pixels into original binary mask - eq.  

 
a) Binary image b) Skeleton after salt filter c) Objects with holes  
Figure 58: Isolation of objects with holes using morphological operations.  
The binary objects are shown in gray and the skeletons, after application of the salt filter, are shown 
as a black overlay on the binary objects. Note that this procedure uses no parameters other then the 
fundamental choice of connectivity; it is free from "magic numbers." In the example shown in Figure 
58, the 8-connected definition was used as well as the structuring element B = N8.  
 
* Filling holes in objects - To fill holes in objects we use the following procedure, which is 
illustrated in Figure 59.  
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Segment image to produce binary representation of objects. 
Compute complement  of binary image as a mask image. 
Generate a seed image as the border of the image. 
Propagate the seed into the mask - eq. 
Complement result of propagation to produce final result. 

 
a) Mask and Seed images b) Objects with holes filled  
Figure 59: Filling holes in objects.  
 
The mask image is illustrated in gray in Figure 59a and the seed image is shown in black in that same 
illustration. When the object pixels are specified with a connectivity of C = 8, then the propagation 
into the mask (background) image should be performed with a connectivity of C = 4, that is, dilations 
with the structuring element B = N4. This procedure is also free of "magic numbers."  
 
* Removing border -touching objects - Objects that are connected to the image border are not 
suitable for analysis. To eliminate them we can use a series of morphological operations that are 
illustrated in Figure 60.  
Segment image to produce binary mask image of objects. 
Generate a seed image as the border of the image. 
Propagate the seed into the mask - eq. 
Compute XOR of the propagation result and the mask image as final result 

 
a) Mask and Seed images b) Remaining objects  
Figure 60: Removing objects touching borders.  
 
The mask image  is illustrated in gray in Figure 60a and the seed image is shown in black in that 
same illustration. If the structuring element used in the propagation is B = N4, then objects are 
removed that are 4-connected with the image boundary. If B = N8 is used then objects that 8-
connected with the boundary are removed.  
* Exo-skeleton - The exo-skeleton of a set of objects is the skeleton of the background that contains 
the objects. The exo-skeleton produces a partition of the image into regions each of which contains 
one object. The actual skeletonization (eq. ) is performed without the preservation of end pixels and 
with the border set to "0." The procedure is described below and the result is illustrated in Figure 61.  
Segment image to produce binary image. 
Compute complement  of binary image. 
Compute skeleton using eq. i+ii  with border set to "0". 



Digital Image Processing 

 
 
 

24 

 
Figure 61: Exo-skeleton. 

 
* Touching objects - Segmentation procedures frequently have difficulty separating slightly 
touching, yet distinct, objects. The following procedure provides a mechanism to separate these 
objects and makes minimal use of "magic numbers." The exo-skeleton produces a partition of the 
image into regions each of which contains one object. The actual skeletonization is performed 
without the preservation of end pixels and with the border set to "0." The procedure is illustrated in 
Figure 62.  
 
Segment image to produce binary image. 
Compute a "small number" of erosions with B = N4. 
Compute exo-skeleton of eroded result. 
Complement exo-skeleton result. 
Compute AND of original binary image and the complemented exo-skeleton. 

     
a) Eroded and exo-skeleton images  b) Objects separated (detail)  
Figure 62: Separation of touching objects.  
 
The erod ed binary  image  is illustrated in gray in Figure 62a and the exo-skeleton image is shown in 
black in that same illustration. An enlarged section of the final result is shown in Figure 62b and the 
separation is easily seen. This procedure involves choosing a small, minimum number of erosions but 
the number is not critical as long as it initiates a coarse separation of the desired objects. The actual 
separation is performed by the exo-skeleton which, itself, is free of "magic numbers." If the exo-
skeleton is 8-connected than the background separating the objects will be 8-connected. The 
objects, themselves, will be disconnected according to the 4-connected criterion. (See Section 9.6 
and Figure 36.)  

Gray-value mathematical morphology 

As we have seen in Section 10.1.2, gray -value morphological processing techniques can be used for 
practical problems such as shading correction. In this section several other techniques will be 
presented.  
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* Top-hat transform - The isolation of gray-value objects that are convex can be accomplished with 
the top -hat  transform  as developed by Meyer. Depending upon whether we are dealing with light 
objects on a dark background or dark objects on a light background, the transform is defined as:  

Light objects -  

Dark objects -  
Where, the structuring element B is chosen to be bigger than the objects in question, and if possible, 
to have a convex shape. Because of the properties given in eqs. And, Topat(A,B) >= 0. An example of 
this technique is shown in Figure 63.  
The original image including shading is processed by a 15 x 1 structuring element as described in eqs. 
and to produce the desired result. Note that the transform for dark objects has been defined in such 
a way as to yield "positive" objects as opposed to "negative" objects. Other definitions are, of course, 
possible.  
 
* Thresholdin g - A simple estimate of a locally varying threshold surface can be derived from 
morphological processing as follows:  

Threshold surface -  
Once again, we suppress the notation for the structuring element B under the max and min 
operations to keep the notation simple. Its use, however, is understood.  

(a) Original  

 
(a) Light object transform (b) Dark object transform  
Figure 63: Top-hat transforms.  
 
* Local contrast stretching - Using morphological operations we can implement a technique for 
local  contrast  stretching . That is, the amount of stretching that will be applied in a neighborhood 
will be controlled by the original contrast in that neighborhood. The morphological gradient defined 
in eq. may also be seen as related to a measure of the local contrast in the window defined by the 
structuring element B:  

 
 
The procedure for local contrast stretching is given by:  
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The max and min operations are taken over the structuring element B. The effect of this procedure 
is illustrated in Figure 64. It is clear that this local  operation is an extended version of the point  
operation for contrast stretching presented in eq. (77).  

   

before after  before after  before after  
Figure 64: Local contrast stretching.  
Using standard test images (as we have seen in so many examples) illustrates the power of this local 
morphological filtering approach.  
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Mathematics-based Operations 

We distinguish in this section between binary arithmetic and ordinary arithmetic. In the binary case 
there are two brightness values "0" and "1". In the ordinary case we begin with 2B brightness values or 
levels but the processing of the image can easily generate many more levels. For this reason many 
software  systems provide 16 or 32 bit representations for pixel brightness in order to avoid problems 
with arithmetic overflow.  

Binary operations 

Operations based on binary (Boolean) arithmetic form the basis for a powerful set of tools that will 
be described here and extended in Section 9.6, mathematical morphology. The operations described 
below are point operations and thus admit a variety of efficient implementations including simple 
look-up tables. The standard notation for the basic set of binary operations is:  

 
The implication is that each operation is applied on a pixel-by-pixel basis. For example,  

. The definition of each operation is:  

 
These operations are illustrated in Figure 22 where the binary value "1" is shown in black and the 
value "0" in white.  

  
a) Image a   b) Image b 
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c) NOT (b) =  d) OR (a,b) = a + b  e) AND(a,b) = a * b 

  
f) XOR (a,b) = a b  g) SUB(a,b) = a \ b  
Figure 22: Examples of the various binary point operations.  
The SUB (*) operation can be particularly useful when the image a represents a region-of-interest 
that we want to analyze systematically and the image b represents objects that, having been 
analyzed, can now be discarded, that is subtracted, from the region.  

Arithmetic-based operations 

The gray-value point operations that form the basis for image processing are based on ordinary 
mathematics and include:  

Operation   Definition   Preferred data type    

ADD  c = a + b  Integer   

SUB  c = a - b  Integer   

MUL  c = a * b  Integer or floating point   

DIV  c = a / b  Floating point   

LOG  c = log(a)  Floating point   

EXP  c = exp(a)  Floating point   

SQRT  c = sqrt(a)  Floating point   

TRIG.  c = sin/cos/tan(a)  Floating point   

INVERT  c = (2B - 1) - a  Integer   
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Convolution-based Operations 

Convolution, the mathematical, local  operation defined in Section 3.1 is central to modern image 
processing. The basic idea is that a window of some finite size and shape--the support --is scanned 
across the image. The output pixel value is the weighted sum of the input pixels within the window 
where the weights are the values of the filter assigned to every pixel of the window itself. The 
window with its weights is called the convolution  kernel . This leads directly to the following 
variation on eq. . If the filter h[j ,k] is zero outside the (rectangular) window {j =0,1,...,J-1; 
k=0,1,...,K-1}, then, using eq. , the convolution can be written as the following finite sum:  

 
This equation can be viewed as more than just a pragmatic mechanism for smoothing or sharpening 
an image. Further, while eq. illustrates the local character of this operation, eqs. and suggest that 
the operation can be implemented through the use of the Fourier domain which requires a global 
operation, the Fourier transform. Both of these aspects will be discussed below.  

Background 

In a variety of image-forming systems an appropriate model for the transformation of the physical 
signal a (x,y) into an electronic signal c(x,y) is the convolution of the input signal with the impulse 
response of the sensor system. This system might consist of both an optical as well as an electrical 
sub-system. If each of these systems can be treated as a linear, shift-invariant (LSI) system then the 
convolution model is appropriate. The definitions of these two, possible, system properties are given 
below:  

Linearity  -  

Shift -Invariance -  
where w1 and w2 are arbitrary complex constants and xo and yo are coordinates corresponding to 
arbitrary spatial translations.  
Two remarks are appropriate at this point. First, linearity implies (by choosing w1 = w2 = 0) that "zero 
in" gives "zero out". The offset described in eq. means that such camera signals are not the output of 
a linear system and thus (strictly speaking) the convolution result is not applicable. Fortunately, it is 
straightforward to correct for this non-linear effect. (See Section 10.1.)  
Second, optical lenses with a magnification, M, other than 1x are not shift invariant; a translation of 
1 unit in the input image a (x,y) produces a translation of M units in the output image c(x,y). Due to 
the Fourier property described in eq. this case can still be handled by linear system theory.  
If an impulse point of light d(x,y) is imaged through an LSI system then the impulse response of that 
system is called the point  spread function  (PSF). The output image then becomes the convolution of 
the input image with the PSF. The Fourier transform of the PSF is called the optical  transfer  function  
(OTF). For optical systems that are circularly symmetric, aberration-free, and diffraction-limited the 
PSF is given by the Airy disk, shown in Table 4-T.5. The OTF of the Airy disk is also presented in 
Table 4-T.5.  
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If the convolution window is not the diffraction-limited PSF of the lens but rather the effect of 
defocusing a lens then an appropriate model for h (x,y) is a pill box of radius a as described in Table 
4-T.3. The effect on a test pattern is illustrated in Figure 23.  

 
a) Test pattern   b) Defocused image  
Figure 23: Convolution of test pattern with a pill box of radius a=4.5 pixels.  
The effect of the defocusing is more than just simple blurring or smoothing. The almost periodic 
negative lobes in the transfer function in Table 4-T.3 produce a 180deg. phase shift in which black 
turns to white and vice-versa. The phase shift is clearly visible in Figure 23b.  

Convolution in the spatial domain 

In describing filters based on convolution we will use the following convention. Given a filter h[j,k] 
of dimensions J x K, we will consider the coordinate [j=0,k=0] to be in the center of the filter matrix, 
h. This is illustrated in Figure 24. The "center" is well-defined when J and K are odd; for the case 
where they are even, we will use the approximations (J/2, K/2) for the "center" of the matrix.  

 
Figure 24: Coordinate system for describing h[j ,k]  
When we examine the convolution sum (eq. ) closely, several issues become evident.  
 
* Evaluation of formula for m=n=0 while rewriting the limits of the convolution sum based on the 
"centering" of h[j ,k] shows that values of a[j ,k] can be required that are outside the image 
boundaries:  

 
The question arises - what values should we assign to the image a[m,n] for m<0, m>=M, n<0, and 
n>=N? There is no "answer" to this question. There are only alternatives among which we are free to 
choose assuming we understand the possible consequences of our choice. The standard alternatives 
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are a) extend the images with a constant (possibly zero) brightness value, b) extend the image 
periodically, c) extend the image by mirroring it at its boundaries, or d) extend the values at the 
boundaries indefinitely. These alternatives are illustrated in Figure 25.  

 
(a)   (b)   (c)   (d)  
Figure 25: Examples of various alternatives to extend an image outside its formal boundaries. See 
text for explanation.  
 
* When the convolution sum is written in the standard form (eq. ) for an image a[m,n] of size M x N:  

 
we see that the convolution kernel h[j ,k] is mirrored around j =k=0 to produce 
h[-j ,-k] before it is translated by [m,n] as indicated in eq. . While some convolution kernels in 
common use are symmetric in this respect, h[j ,k]= h[-j ,-k], many are not. (See Section 9.5.) Care 
must therefore be taken in the implementation of filters with respect to the mirroring requirements.  
 
* The computational complexity for a K x K convolution kernel implemented in the spatial domain on 
an image of N x N is O(K2) where the complexity is measured per pixel  on the basis of the number of 
multiplies-and-adds (MADDs).  
 
* The value computed by a convolution that begins with integer brightness for a[m,n] may produce a 
rational number or a floating point number in the result c[m,n]. Working exclusively with integer 
brightness values will, therefore, cause roundoff errors.  
 
* Inspection of eq. reveals another possibility for efficient implementation of convolution. If the 
convolution kernel h[j ,k] is separable, that is, if the kernel can be written as:  

 
then the filtering can be performed as follows:  

 
This means that instead of applying one, two-dimensional filter it is possible to apply two, one-
dimensional filters, the first one in the k direction and the second one in the j  direction. For an N x N 
image this, in general, reduces the computational complexity per pixel from O(J* K) to O(J+K).  
An alternative way of writing separability is to note that the convolution kernel (Figure 24) is a 
matrix h and, if separable, h can be written as:  

 
where "t" denotes the matrix transpose operation. In other words, h can be expressed as the outer  
product  of a column vector [hcol] and a row vector [hrow].  
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* For certain filters it is possible to find an incremental  implementation  for a convolution. As the 
convolution window moves over the image (see eq. ), the leftmost column of image data under the 
window is shifted out as a new column of image data is shifted in from the right. Efficient algorithms 
can take advantage of this and, when combined with separable filters as described above, this can 
lead to algorithms where the computational complexity per pixel is O(constant).  

Convolution in the frequency domain 

In Section 3.4 we indicated that there was an alternative method to implement the filtering of 
images through convolution. Based on eq. it appears possible to achieve the same result as in eq. by 
the following sequence of operations:  

i)  Compute A( , ) = F{a[m,n]}  

ii)  Multiply A( , ) by the precomputed  ( , ) = F{h[m,n]}  

iii)  Compute the result c[m,n] = F-1{A( , )*( , )}  
 
* While it might seem that the "recipe" given above in eq. circumvents the problems associated with 
direct convolution in the spatial domain--specifically, determining values for the image outside the 
boundaries of the image--the Fourier domain approach, in fact, simply "assumes" that the image is 
repeated periodically outside its boundaries as illustrated in Figure 25b. This phenomenon is referred 
to as circular  convolution .  
If circular convolution is not acceptable then the other possibilities illustrated in Figure 25 can be 

realized by embedding the image a[m,n] and the filter ( , ) in larger matrices with the desired 
image extension mechanism for a[m,n] being explicitly implemented.  
 
* The computational complexity per pixel of the Fourier approach for an image of N x N and for a 
convolution kernel of K x K is O(logN) complex MADDs independent  of  K. ere we assume that N > K 
and that N is a highly composite number such as a power of two. (See also 2.1.) This latter 
assumption permits use of the computationally efficient Fast Fourier Transform (FFT) algorithm. 
Surprisingly then, the indirect route described by eq. can be faster than the direct route given in eq. 
. This requires, in general, that K2 >> logN. The range of K and N for which this holds depends on the 
specifics of the implementation. For the machine on which this manuscript is being written and the 
specific image processing package that is being used, for an image of N = 256 the Fourier approach is 
faster than the convolution approach when K >= 15. (It should be noted that in this comparison the 
direct convolution involves only integer arithmetic while the Fourier domain approach requires 
complex floating point arithmetic.)  
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Smoothing Operations 

These algorithms are applied in order to reduce noise and/or to prepare images for further 
processing such as segmentation. We distinguish between linear and non- linear algorithms where the 
former are amenable to analysis in the Fourier domain and the latter are not. We also distinguish 
between implementations based on a rectangular support for the filter and implementations based 
on a circular support for the filter.  

Linear Filters 

Several filtering algorithms will be presented together with the most useful supports.  
 
* Uniform filter - The output image is based on a local averaging of the input filter where all of the 
values within the filter support have the same weight. In the continuous spatial domain (x,y) the PSF 
and transfer function are given in Table 4-T.1 for the rectangular case and in Table 4-T.3 for the 
circular (pill box) case. For the discrete spatial domain [m,n] the filter values are the samples of the 
continuous domain case. Examples for the rectangular case (J=K=5) and the circular case (R=2.5) are 
shown in Figure 26.  

 
(a) Rectangular filter (J=K=5) (b) Circular filter (R=2.5)  
Figure 26: Uniform filters for image smoothing  
 

Note that in both cases the filter is normalized so that h[j ,k] = 1. This is done so that if the input 
a[m,n] is a constant then the output image c[m,n] is the same constant. The justification can be 
found in the Fourier transform property described in eq. . As can be seen from Table 4, both of these 
filters have transfer functions that have negative lobes and can, therefore, lead to phase reversal as 
seen in Figure 23. The square implementation of the filter is separable and incremental; the circular 
implementation is incremental.  
 
* Triangular filter - The output image is based on a local averaging of the input filter where the 
values within the filter support have differing weights. In general, the filter can be seen as the 
convolution of two (identical) uniform filters either rectangular or circular and this has direct 
consequences for the computational complexity. (See Table 13.) In the continuous spatial domain the 
PSF and transfer function are given in Table 4-T.2 for the rectangular support case and in Table 4-T.4 
for the circular (pill box) support case. As seen in Table 4 the transfer functions of these filters do 
not have negative lobes and thus do not exhibit phase reversal.  
Examples for the rectangular support case (J=K=5) and the circular support case (R=2.5) are shown in 

Figure 27. The filter is again normalized so that h[j ,k]=1.  
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(a) Pyramidal filter (J=K=5) (b) Cone filter (R=2.5)  
Figure 27: Triangular filters for image smoothing  
 
* Gaussian filte r - The use of the Gaussian kernel for smoothing has become extremely popular. This 
has to do with certain properties of the Gaussian (e.g. the central limit theorem, minimum space-
bandwidth product) as well as several application areas such as edge finding and scale space 
analysis. The PSF and transfer function for the continuous space Gaussian are given in Table 4-T6. 
The Gaussian filter is separable:  

 
There are four distinct ways to implement the Gaussian:  
- Convolution using a finite number of samples (No) of the Gaussian as the convolution kernel. It is 

common to choose No = 3  or 5 .  

 
- Repetitive convolution using a uniform filter as the convolution kernel.  

 
The actual implementation (in each dimension) is usually of the form:  

 
This implementation makes use of the approximation afforded by the central limit theorem. For a 

desired with eq. , we use No = although this severely restricts our choice of 's to integer 
values.  
- Multiplication in the frequency domain. As the Fourier transform of a Gaussian is a Gaussian (see 

Table -T.6), this means that it is straightforward to prepare a filter ( , ) = G2D( , ) for use with 
eq. . To avoid truncation effects in the frequency domain due to the infinite extent of the Gaussian 
it is important to choose a that is sufficiently large. Choosing > k/  where k = 3 or 4 will usually 
be sufficient.  
- Use of a recursive filter implementation. A recursive filter has an infinite impulse response and thus 
an infinite support. The separable Gaussian filter can also be implemented by applying the following 
recipe in each dimension when >= 0.5.  
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i)  Choose the based on the desired goal of the filtering; ii)  Determine the parameter q based on 
eq. ; iii)  Use eq. to determine the filter coefficients {b0,b1,b2,b3,B}; iv)  Apply the forward difference 
equation, eq. ; v) Apply the backward difference equation, eq. ; 
The relation between the desired and q is given by:  

 
The filter  coefficients  {b0, b1, b2, b3, B } are defined by:  

 
The one-dimensional forward difference equation takes an input row (or column) a[n] and produces 
an intermediate output result w[n] given by:  

 
The one-dimensional backward difference  equation  takes the intermediate result w[n] and produces 
the output c[n] given by:  

 
The forward equation is applied from n = 0 up to n = N - 1 while the backward equation is applied 
from n = N - 1 down to n = 0.  
The relative performance of these, various implementation of the Gaussian filter can be described as 

follows. Using the root -square error  between a true, infinite-extent Gaussian, 
g[n| ], and an approximated Gaussian, h[n], as a measure of accuracy, the various algorithms 
described above give the results shown in Figure 28a. The relative speed of the various algorithms in 
shown in Figure 28b.  
The root-square error measure is extremely conservative and thus all filters, with the exception of 
"Uniform 3x" for large , are sufficiently accurate. The recursive implementation is the fastest 
independent of ; the other implementations can be significantly slower. The FFT implementation, 
for example, is 3.1 times slower for N=256 . Further, the FFT requires that N be a highly composite 
number.  
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a) Accuracy comparison b) Speed comparison 
Figure 28: Comparison of various Gaussian algorithms with N=256. The legend is spread across both 
graphs  
 
* Other - The Fourier domain approach offers the opportunity to implement a variety of smoothing 
algorithms. The smoothing filters will then be lowpass filters . In general it is desirable to use a 
lowpass filter that has zero phase so as not to produce phase distortion when filtering the image. The 
importance of phase was illustrated in Figures 5 and 23. When the frequency domain characteristics 
can be represented in an analytic form, then this can lead to relatively straightforward 

implementations of ( , ). Possible candidates include the lowpass filters "Airy" and "Exponential 
Decay" found in Table 4-T.5 and Table 4-T.8, respectively.  
Non-Linear Filters 
A variety of smoothing filters have been developed that are not linear. While they cannot, in 
general, be submitted to Fourier analysis, their properties and domains of application have been 
studied extensively.  
 
* Median filter - The median statistic was described in Section 3.5.2. A median filter is based upon 
moving a window over an image (as in a convolution) and computing the output pixel as the median 
value of the brightness within the input window. If the window is J x K in size we can order the J*K 
pixels in brightness value from smallest to largest. If J*K is odd then the median will be the (J*K+1)/2 
entry in the list of ordered brightness. Note that the value selected will be exactly equal to one of 
the existing brightness so that no roundoff error will be involved if we want to work exclusively with 
integer brightness values. The algorithm as it is described above has a generic complexity per pixel 
of O(J*K*log(J*K)). Fortunately, a fast algorithm (due to uang et al. ) exists that reduces the 
complexity to O(K) assuming J >= K.  
A useful variation on the theme of the median filter is the percentile  filter . ere the center pixel in 
the window is replaced not by the 50% (median) brightness value but rather by the p% brightness 
value where p% ranges from 0% (the minimum  filter ) to 100% (the maximum filter ). Values other 
then (p=50)% do not, in general, correspond to smoothing filters.  
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* Kuwahara filter - Edges play an important role in our perception of images (see Figure 15) as well 
as in the analysis of images. As such, it is important to be able to smooth images without disturbing 
the sharpness and, if possible, the position of edges. A filter that accomplishes this goal is termed an 
edge-preserving filter  and one particular example is the Kuwahara filter. Although this filter can be 
implemented for a variety of different window shapes, the algorithm will be described for a square 
window of size J = K = 4L + 1 where L is an integer. The window is partitioned into four regions as 
shown in Figure 29.  

 
Figure 29: Four, square regions defined for the Kuwahara filter. In this example L=1 and thus J=K=5. 
Each region is [(J+1)/2] x [(K+1)/2].  
In each of the four regions (i=1,2,3,4), the mean brightness, mi in eq. , and the variancei, si

2 in eq. , 
are measured. The output value of the center pixel in the window is the mean value of that region 
that has the smallest variance.  

Summary of Smoothing Algorithms 

The following table summarizes the various properties of the smoothing algorithms presented above. 
The filter size is assumed to be bounded by a rectangle of J x K where, without loss of generality, J 
>= K. The image size is N x N.  

Algorithm   Domain  Type  Support  Separable / Incremental   Complexity/pixel   

Uniform  Space  Linear  Square  Y / Y  O(constant)  

Uniform  Space  Linear  Circular  N / Y  O(K)  

Triangle  Space  Linear  Square  Y / N  O(constant ) ª  

Triangle  Space  Linear  Circular  N / N  O(K) ª  

Gaussian  Space  Linear  ª  Y / N  O(constant) ª  

Median  Space  Non-Linear  Square  N / Y  O(K) ª  

Kuwahara  Space  Non-Linear  Square ª  N / N  O(J* K)  

Other  Frequency  Linear  --  -- / --  O(logN)  

Table 13: Characteristics of smoothing filters. ªSee text for additional explanation.  
Examples of the effect of various smoothing algorithms are shown in Figure 30.  
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a) Original   b) Uniform 5 x 5  c) Gaussian (  = 2.5) 

  
d) Median 5 x 5  e) Kuwahara 5 x 5  
Figure 30: Illustration of various linear and non-linear smoothing filters  
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Shading Correction 

The method by which images are produced--the interaction between objects in real space, the 
illumination, and the camera--frequently leads to situations where the image exhibits significant 
shading across the field-of-view. In some cases the image might be bright in the center and decrease 
in brightness as one goes to the edge of the field-of-view. In other cases the image might be darker 
on the left side and lighter on the right side. The shading might be caused by non-uniform 
illumination, non-uniform camera sensitivity, or even dirt and dust on glass (lens) surfaces. In 
general this shading effect is undesirable. Eliminating it is frequently necessary for subsequent 
processing and especially when image analysis or image understanding is the final goal.  

Model of shading 

In general we begin with a model for the shading effect. The illumination Iill (x,y) usually interacts in 
a multiplicative with the object a(x,y) to produce the image b(x,y):  

 
with the object representing various imaging modalities such as:  

 
where at position (x,y), r(x,y) is the reflectance , OD(x,y) is the optical  density, and c(x,y) is the 
concentration of fluorescent material. Parenthetically, we note that the fluorescence model only 
holds for low concentrations. The camera may then contribute gain and offset  terms, as in eq. (74), 
so that:  

Total shading  -  
In general we assume that Iill [m,n] is slowly varying compared to a[m,n].  

Estimate of shading 

We distinguish between two cases for the determination of a[m,n] starting from c[m,n]. In both cases 
we intend to estimate the shading terms {gain[m,n]*Iill [m,n]} and {offset [m,n]}. While in the first 
case we assume that we have only the recorded image c[m,n] with which to work, in the second case 
we assume that we can record two, additional, calibration images.  
* A posteriori estimate  - In this case we attempt to extract the shading estimate from c[m,n]. The 
most common possibilities are the following.  
Lowpass filtering - We compute a smoothed version of c[m,n] where the smoothing is large compared 
to the size of the objects in the image. This smoothed version is intended to be an estimate of the 
background of the image. We then subtract the smoothed version from c[m,n] and then restore the 
desired DC value. In formula:  

Lowpass -  
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where is the estimate of a[m,n]. Choosing the appropriate lowpass filter means knowing the 
appropriate spatial frequencies in the Fourier domain where the shading terms dominate.  
 
omomorphic filtering - We note that, if the offset [m,n] = 0, then c[m,n] consists solely of 
multiplicative terms. Further, the term {gain[m,n]*Iill [m,n]} is slowly varying while a[m,n] 
presumably is not. We therefore take the logarithm of c[m,n] to produce two terms one of which is 
low frequency and one of which is high frequency. We suppress the shading by high pass filtering the 
logarithm of c[m,n] and then take the exponent (inverse logarithm) to restore the image. This 
procedure is based on homomorphic filtering  as developed by Oppenheim, Schafer and Stockham . In 
formula:  

 
 
Morphological filtering - We again compute a smoothed version of c[m,n] where the smoothing is 
large compared to the size of the objects in the image but this time using morphological smoothing 
as in eq. . This smoothed version is the estimate of the background of the image. We then subtract 
the smoothed version from c[m,n] and then restore the desired DC value. In formula:  

 
Choosing the appropriate morphological filter window means knowing (or estimating) the size of the 
largest objects of interest.  
* A priori estimate - If it is possible to record test (calibration) images through the cameras system, 
then the most appropriate technique for the removal of shading effects is to record two images - 
BLACK[m,n] and WHITE[m,n]. The BLACK image is generated by covering the lens leading to b[m,n] = 
0 which in turn leads to BLACK[m,n] = offset [m,n]. The WHITE image is generated by using a[m,n] = 
1 which gives WHITE[m,n] = gain[m,n]*Iill [m,n] + offset [m,n]. The correction then becomes:  

 
The constant term is chosen to produce the desired dynamic range.  
The effects of these various techniques on the data from Figure 45 are shown in Figure 47. The 
shading is a simple, linear ramp increasing from left to right; the objects consist of Gaussian peaks of 
varying widths.  

(a) Original  
(b) Correction with Lowpass filtering (c) Correction with Logarithmic filtering 
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(c) Correction with Max/Min filtering (d) Correction with Test Images 
Figure 47: Comparison of various shading correction algorithms. The final result (d) is identical to 
the original (not shown).  
In summary, if it is possible to obtain BLACK and WHITE calibration images, then eq. is to be 
preferred. If this is not possible, then one of the other algorithms will be necessary.  
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Basic Enhancement and Restoration Techniques 

The process of image acquisition frequently leads (inadvertently) to image degradation. Due to 
mechanical problems, out-of-focus blur, motion, inappropriate illumination, and noise the quality of 
the digitized image can be inferior to the original. The goal of enhancement is-- starting from a 
recorded image c[m,n]--to produce the most visually pleasing image â[m,n]. The goal of restoration 
is--starting from a recorded image c[m,n]--to produce the best possible estimate â[m,n] of the 
original image a[m,n]. The goal of enhancement is beauty; the goal of restoration is truth.  
The measure of success in restoration is usually an error measure between the original a[m,n] and 
the estimate â[m,n]: E{â[m,n], a[m,n]}. No mathematical error function is known that corresponds 
to human perceptual assessment of error.  The mean-square error function is commonly used 
because:  
1. It is easy to compute;  
2. It is differentiable implying that a minimum can be sought;  
3. It corresponds to "signal energy" in the total error, and;  
4. It has nice properties vis à vis Parseval's theorem, eqs. (22) and (23).  
The mean-square error is defined by:  

 
In some techniques an error measure will not be necessary; in others it will be essential for 
evaluation and comparative purposes. 

Unsharp masking 

A well-known technique from photography to improve the visual quality of an image is to enhance 
the edges of the image. The technique is called unsharp masking. Edge enhancement means first 
isolating the edges in an image, amplifying them, and then adding them back into the image. 
Examination of Figure 33 shows that the Laplacian is a mechanism for isolating the gray level edges. 
This leads immediately to the technique:  

 
The term k is the amplifying term and k > 0. The effect of this technique is shown in Figure 48.  
The Laplacian used to produce Figure 48 is given by eq. (120) and the amplification term k = 1.  

 

Original Laplacian-enhanced  
Figure 48: Edge enhanced compared to original  
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Noise suppression 

The techniques available to suppress noise can be divided into those techniques that are based on 
temporal information and those that are based on spatial information. By temporal information we 
mean that a sequence of images {ap[m,n] | p=1,2,...,P} are available that contain exactly  the same 
objects and that differ only in the sense of independent noise realizations. If this is the case and if 
the noise is additive, then simple averaging of the sequence:  

Temporal averaging  -  
will produce a result where the mean value of each pixel will be unchanged. For each pixel, 

however, the standard deviation will decrease from to .  
If temporal averaging is not possible, then spatial averaging can be used to decrease the noise. This 
generally occurs, however, at a cost to image sharpness. Four obvious choices for spatial averaging 
are the smoothing algorithms that have been described in Section 9.4 - Gaussian filtering (eq. (93)), 
median filtering, Kuwahara filtering, and morphological smoothing (eq. ).  
Within the class of linear filters, the optimal filter for restoration in the presence of noise is given by 
the Wiener filter  . The word "optimal" is used here in the sense of minimum mean-square error 
(mse). Because the square root operation is monotonic increasing, the optimal filter also minimizes 
the root mean-square error (rms). The Wiener filter is characterized in the Fourier domain and for 
additive noise that is independent of the signal it is given by:  

 
where Saa(u,v) is the power spectral density of an ensemble of random images {a[m,n]} and Snn(u,v) is 
the power spectral density of the random noise. If we have a single image then Saa(u,v) = |A(u,v)|2. 
In practice it is unlikely that the power spectral density of the uncontaminated image will be 
available. Because many images have a similar power spectral density that can be modeled by Table 
4-T.8, that model can be used as an estimate of Saa(u,v).  
A comparison of the five different techniques described above is shown in Figure 49. The Wiener 
filter was constructed directly from eq. because the image spectrum and the noise spectrum were 
known. The parameters for the other filters were determined choosing that value (either or 
window size) that led to the minimum rms.  

 
a) Noisy image (SNR=20 dB) b) Wiener filter c) Gauss filter (  = 1.0)  
rms = 25.7 rms = 20.2 rms = 21.1  
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d) Kuwahara filter (5 x 5) e) Median filter (3 x 3) f) Morph. smoothing (3 x 3)  
rms = 22.4 rms = 22.6 rms = 26.2  
Figure 49: Noise suppression using various filtering techniques.  
The root mean-square errors (rms) associated with the various filters are shown in Figure 49. For this 
specific comparison, the Wiener filter generates a lower error than any of the other procedures that 
are examined here. The two linear procedures, Wiener filtering and Gaussian filtering, performed 
slightly better than the three non-linear alternatives.  

Distortion suppression 

The model presented above--an image distorted solely by noise--is not, in general, sophisticated 
enough to describe the true nature of distortion in a digital image. A more realistic model includes 
not only the noise but also a model for the distortion induced by lenses, finite apertures, possible 
motion of the camera and/or an object, and so forth. One frequently used model is of an image 
a[m,n] distorted by a linear, shift-invariant system ho[m,n] (such as a lens) and then contaminated by 
noise [m,n]. Various aspects of ho[m,n] and [m,n] have been discussed in earlier sections. The 
most common combination of these is the additive model:  

 
The restoration procedure that is based on linear filtering coupled to a minimum mean-square error 
criterion again produces a Wiener filter :  

 
Once again Saa(u,v) is the power spectral density of an image, Snn(u,v) is the power spectral density 
of the noise, and o(u,v) = F{ho[m,n]}. Examination of this formula for some extreme cases can be 
useful. For those frequencies where Saa(u,v) >> Snn(u,v), where the signal spectrum dominates the 
noise spectrum, the Wiener filter is given by 1/o(u,v), the inverse filter  solution. For those 
frequencies where Saa(u,v) << Snn(u,v), where the noise spectrum dominates the signal spectrum, the 
Wiener filter is proportional to o*(u,v), the matched filter  solution. For those frequencies where 

o(u,v) = 0, the Wiener filter W(u,v) = 0 preventing overflow.  
The Wiener filter is a solution to the restoration problem based upon the hypothesized use of a 
linear filter and the minimum mean-square (or rms) error criterion. In the example below the image 
a[m,n] was distorted by a bandpass filter and then white noise was added to achieve an SNR = 30 dB. 
The results are shown in Figure 50.  
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a) Distorted, noisy image b) Wiener filter c) Median filter (3 x 3) 
rms = 108.4 rms = 40.9  
Figure 50: Noise and distortion suppression using the Wiener filter, eq. and the median filter.  
The rms after Wiener filtering but before contrast stretching was 108.4; after contrast stretching 
with eq. (77) the final result as shown in Figure 50b has a mean-square error of 27.8. Using a 3 x 3 
median filter  as shown in Figure 50c leads to a rms error of 40.9 before contrast stretching and 35.1 
after contrast stretching. Although the Wiener filter gives the minimum rms error over the set of all 
linear  filters, the non-linear  median filter gives a lower rms error. The operation contrast  stretching  
is itself a non-linear operation. The "visual quality" of the median filtering result is comparable to the 
Wiener filtering result. This is due in part to periodic artifacts introduced by the linear filter which 
are visible in Figure 50b.  
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Noise 

Images acquired through modern sensors may be contaminated by a variety of noise sources. By noise 
we refer to stochastic variations as opposed to deterministic distortions such as shading or lack of 
focus. We will assume for this section that we are dealing with images formed from light using 
modern electro-optics. In particular we will assume the use of modern, charge-coupled device (CCD) 
cameras where photons produce electrons that are commonly referred to as photoelectrons. 
Nevertheless, most of the observations we shall make about noise and its various sources hold 
equally well for other imaging modalities.  
While modern technology has made it possible to reduce the noise levels associated with various 
electro-optical devices to almost negligible levels, one noise source can never be eliminated and thus 
forms the limiting case when all other noise sources are "eliminated".  

Photon Noise 

When the physical signal that we observe is based upon light, then the quantum nature of light plays 

a significant role. A single photon at = 500 nm carries an energy of E = h  = hc/  = 3.97 x 10-19 
Joules. Modern CCD cameras are sensitive enough to be able to count individual photons. (Camera 
sensitivity will be discussed in Section 7.2.) The noise problem arises from the fundamentally 
statistical nature of photon production. We cannot assume that, in a given pixel for two consecutive 
but independent observation intervals of length T, the same number of photons will be counted. 
Photon production is governed by the laws of quantum physics which restrict us to talking about an 
average number of photons within a given observation window. The probability distribution for p 
photons in an observation window of length T seconds is known to be Poisson:  

 
where is the rate or intensity parameter measured in photons per second. It is critical to 
understand that even if there were no other noise sources in the imaging chain, the statistical 
fluctuations associated with photon counting over a finite time interval T would still lead to a finite 
signal-to-noise ratio (SNR). If we use the appropriate formula for the SNR (eq. ), then due to the fact 
that the average value and the standard deviation are given by:  

Poisson process -  
 
we have for the SNR:  

Photon  noise -  
The three traditional assumptions about the relationship between signal and noise do not hold for 
photon noise:  
* photon noise is not independent of the signal;  
* photon noise is not Gaussian, and;  
* photon noise is not additive.  

For very bright signals, where T exceeds 105, the noise fluctuations due to photon statistics can be 
ignored if the sensor has a sufficiently high saturation level. This will be discussed further in Section 
7.3 and, in particular, eq. .  
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Thermal Noise 

An additional, stochastic source of electrons in a CCD well is thermal energy. Electrons can be freed 
from the CCD material itself through thermal vibration and then, trapped in the CCD well, be 
indistinguishable from "true" photoelectrons. By cooling the CCD chip it is possible to reduce 
significantly the number of "thermal electrons" that give rise to thermal noise or dark current. As the 
integration time T increases, the number of thermal electrons increases. The probability distribution 
of thermal electrons is also a Poisson process where the rate parameter is an increasing function of 
temperature. There are alternative techniques (to cooling) for suppressing dark current and these 
usually involve estimating the average dark current for the given integration time and then 
subtracting this value from the CCD pixel values before the A/D converter. While this does reduce 
the dark current average, it does not reduce the dark current standard deviation and it also reduces 
the possible dynamic range of the signal. 

On-chip Electronic Noise 

This noise originates in the process of reading the signal from the sensor, in this case through the 
field effect transistor (FET) of a CCD chip. The general form of the power spectral density of readout 
noise is:  

Readout noise -  

where a and are constants and is the (radial) frequency at which the signal is transferred from 

the CCD chip to the "outside world." At very low readout rates (  < min) the noise has a 1/  
character. Readout noise can be reduced to manageable levels by appropriate readout rates and 
proper electronics. At very low signal levels (see eq. ), however, readout noise can still become a 
significant component in the overall SNR .  
KTC Noise 
Noise associated with the gate capacitor of an FET is termed KTC noise and can be non-negligible. 
The output RMS value of this noise voltage is given by:  

KTC noise (voltage)  -  
where C is the FET gate switch capacitance, k is Boltzmann's constant, and T is the absolute 

temperature of the CCD chip measured in K. Using the relationships , the output 

RMS value of the KTC noise expressed in terms of the number of photoelectrons ( ) is given by:  

KTC noise (electrons)  -  

where e- is the electron charge. For C = 0.5 pF and T = 233 K this gives . This 
value is a "one time" noise per pixel that occurs during signal readout and is thus independent of the 
integration time (see Sections 6.1 and 7.7). Proper electronic design that makes use, for example, of 
correlated double sampling and dual-slope integration can almost completely eliminate KTC noise .  

Amplifier Noise 
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The standard model for this type of noise is additive, Gaussian, and independent of the signal. In 
modern well-designed electronics, amplifier noise is generally negligible. The most common 
exception to this is in color cameras where more amplification is used in the blue color channel than 
in the green channel or red channel leading to more noise in the blue channel. (See also Section 7.6.) 

Quantization Noise 

Quantization noise is inherent in the amplitude quantization process and occurs in the analog-to-
digital converter, ADC. The noise is additive and independent of the signal when the number of 
levels L >= 16. This is equivalent to B >= 4 bits. (See Section 2.1.) For a signal that has been 
converted to electrical form and thus has a minimum and maximum electrical value, eq. is the 
appropriate formula for determining the SNR. If the ADC is adjusted so that 0 corresponds to the 
minimum electrical value and 2B-1 corresponds to the maximum electrical value then:  
Quantization noise -  
For B >= 8 bits, this means a SNR >= 59 dB. Quantization noise can usually be ignored as the total SNR 
of a complete system is typically dominated by the smallest SNR. In CCD cameras this is photon 
noise.  
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Tools 

Certain tools are central to the processing of digital images. These include mathematical tools such as 
convolution, Fourier analysis, and statistical descriptions, and manipulative tools such as chain codes 
and run codes. We will present these tools without any specific motivation. The motivation will follow in 
later sections.  

Convolution 

There are several possible notations to indicate the convolution of two (multi-dimensional) signals to 
produce an output signal. The most common are:  

 

We shall use the first form, , with the following formal definitions.  

In 2D continuous space:  

 

In 2D discrete space:  

 
 

Properties of Convolution 

There are a number of important mathematical properties associated with convolution.  

* Convolution is commutative.  

 

* Convolution is associative.  

 

* Convolution is distributive.  

 

where a, b, c, and d are all images, either continuous or discrete.  
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Fourier Transforms 

The Fourier transform produces another representation of a signal, specifically a representation as a 
weighted sum of complex exponentials. Because of Euler's formula:  

 

where , we can say that the Fourier transform produces a representation of a (2D) signal as a 
weighted sum of sines and cosines. The defining formulas for the forward Fourier and the inverse 
Fourier transforms are as follows. Given an image a and its Fourier transform A, then the forward 
transform goes from the spatial domain (either continuous or discrete) to the frequency domain which is 
always continuous.  

Forward -  

The inverse Fourier transform goes from the frequency domain back to the spatial domain.  

Inverse -  

The Fourier transform is a unique and invertible operation so that:  

 

The specific formulas for transforming back and forth between the spatial domain and the frequency 
domain are given below.  

In 2D continuous space:  

Forward -  

Inverse -  

In 2D discrete space:  

Forward -  

Inverse -  
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Properties of Fourier Transforms 

There are a variety of properties associated with the Fourier transform and the inverse Fourier 
transform. The following are some of the most relevant for digital image processing.  

* The Fourier transform is, in general, a complex function of the real frequency variables. As such the 
transform can be written in terms of its magnitude and phase.  

 

* A 2D signal can also be complex and thus written in terms of its magnitude and phase.  

 

* If a 2D signal is real, then the Fourier transform has certain symmetries.  

 

The symbol (*) indicates complex conjugation. For real signals eq. leads directly to:  

 

* If a 2D signal is real and even, then the Fourier transform is real and even.  

 

* The Fourier and the inverse Fourier transforms are linear operations.  

 

Where a and b are 2D signals (images) and w1 and w2 are arbitrary, complex constants.  

* The Fourier transform in discrete space, A( , ), is periodic in both and . Both periods are 2 .  

 

* The energy, E, in a signal can be measured either in the spatial domain or the frequency domain. For 
a signal with finite energy:  

Parseval's theorem (2D continuous space):  
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Parseval's theorem (2D discrete space):  

 

This "signal energy" is not to be confused with the physical energy in the phenomenon that produced 
the signal. If, for example, the value a[m,n] represents a photon count, then the physical energy is 
proportional to the amplitude, a, and not the square of the amplitude. This is generally the case in video 
imaging.  

* Given three, multi-dimensional signals a, b, and c and their Fourier transforms A, B, and C:  

 

In words, convolution in the spatial domain is equivalent to multiplication in the Fourier (frequency) 
domain and vice-versa. This is a central result which provides not only a methodology for the 
implementation of a convolution but also insight into how two signals interact with each other--under 
convolution--to produce a third signal. We shall make extensive use of this result later.  

* If a two-dimensional signal a(x,y) is scaled in its spatial coordinates then:  

 

* If a two-dimensional signal a(x,y) has Fourier spectrum A(u,v) then:  

 

* If a two-dimensional signal a(x,y) has Fourier spectrum A(u,v) then:  
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Importance of phase and magnitude 

Equation indicates that the Fourier transform of an image can be complex. This is illustrated below 
in Figures 4a-c. Figure 4a shows the original image a[m,n], Figure 4b the magnitude in a scaled form 

as log(|A( , )|), and Figure 4c the phase ( , ).  

 
Figure 4a Figure 4b Figure 4c Original log(|A( , )|) ( , ) 

Both the magnitude and the phase functions are necessary for the complete reconstruction of an image 
from its Fourier transform. Figure 5a shows what happens when Figure 4a is restored solely on the 
basis of the magnitude information and Figure 5b shows what happens when Figure 4a is restored 
solely on the basis of the phase information.  

  
Figure 5a   Figure 5b   ( , ) = 0 |A( , )| = constant 

Neither the magnitude information nor the phase information is sufficient to restore the image. The 
magnitude-only image (Figure 5a) is unrecognizable and has severe dynamic range problems. The 
phase-only image (Figure 5b) is barely recognizable, that is, severely degraded in quality.  

Circularly symmetric signals 

An arbitrary 2D signal a (x,y) can always be written in a polar coordinate system as a(r, ). When 
the 2D signal exhibits a circular symmetry this means that:  

 



Digital Image Processing 

 
 
 

54 

Where r2 = x2 + y2 and tan  = y/x. As a number of physical systems such as lenses exhibit circular 
symmetry, it is useful to be able to compute an appropriate Fourier representation.  

The Fourier transform A (u, v) can be written in polar coordinates A( r, ) and then, for a circularly 
symmetric signal, rewritten as a ankel transform:  

 

Where and Jo(*) is a Bessel function of the first kind of order zero.  

The inverse ankel transform is given by:  

 

The Fourier transform of a circularly symmetric 2D signal is a function of only the radial frequency, r. 

The dependence on the angular frequency, , has vanished. Further, if a(x,y) = a(r) is real, then it is 
automatically even due to the circular symmetry. According to equation , A( r) will then be real and 
even.  

Examples of 2D signals and transforms 

Table 4 shows some basic and useful signals and their 2D Fourier transforms. In using the table 
entries in the remainder of this chapter we will refer to a spatial domain term as the point  spread 
f unction  (PSF) or the 2D impulse response and its Fourier transforms as the optical  transfer  function  
(OTF) or simply transfer  function . Two standard signals used in this table are u(*), the unit step 
function, and J1(*), the Bessel function of the first kind. Circularly symmetric signals are treated as 
functions of r as in eq. . 
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Statistics 

In image processing it is quite common to use simple statistical descriptions of images and sub-images. 
The notion of a statistic is intimately connected to the concept of a probability distribution, generally the 
distribution of signal amplitudes. For a given region--which could conceivably be an entire image--we 
can define the probability distribution function of the brightness in that region and the probability density 
function of the brightness in that region. We will assume in the discussion that follows that we are 
dealing with a digitized image a[m,n].  

Probability distribution function of the brightness 

The probability distribution function, P(a), is the probability that a brightness chosen from the region 
is less than or equal to a given brightness value a. As a increases from -  to + , P(a) increases from 
0 to 1. P(a) is monotonic, non-decreasing in a and thus dP/da >= 0.  

Probability density function of the brightness 

The probability that a brightness in a region falls between a and a+ a, given the probability 

distribution function P(a), can be expressed as p(a) a where p(a) is the probability density function:  

 

    

T.1 Rectangle  
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T.2 Pyramid    
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T.3 Pill Box  
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T.4 Cone   
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T.5 Airy PSF  
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T.6 Gaussian  
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T.7 Peak  
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T.8 Exponential   

Decay  
 

  

 picture 1   picture 2  

Table 4: 2D Images and their Fourier Transforms  
Because of the monotonic, non-decreasing character of P(a) we have that:  

 

For an image with quantized (integer) brightness amplitudes, the interpretation of a is the width of a 
brightness interval. We assume constant width intervals. The brightness probability density function is 
frequently estimated by counting the number of times that each brightness occurs in the region to 
generate a histogram, h[a]. The histogram can then be normalized so that the total area under the 
histogram is 1 (eq. ). Said another way, the p[a] for a region is the normalized count of the number of 
pixels, , in a region that have quantized brightness a:  

 

The brightness probability distribution function for the image shown in Figure 4a is shown in Figure 6a. 
The (unnormalized) brightness histogram of Figure 4a which is proportional to the estimated brightness 
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probability density function is shown in Figure 6b. The height in this histogram corresponds to the 
number of pixels with a given brightness.  

 
(a) (b) 

Figure 6 : (a) Brightness distribution function of Figure 4a with minimum, median, and maximum 
indicated. See text for explanation. (b) Brightness histogram of Figure 4a.  

Both the distribution function and the histogram as measured from a region are a statistical description 
of that region. It must be emphasized that both P[a] and p[a] should be viewed as estimates of true 
distributions when they are computed from a specific region. That is, we view an image and a specific 
region as one realization of the various random processes involved in the formation of that image and 
that region. In the same context, the statistics defined below must be viewed as estimates of the 
underlying parameters.  

Average 

The average brightness of a region is defined as the sample mean of the pixel brightness within that 

region. The average, ma, of the brightness over the pixels within a region ( ) is given by:  

 

Alternatively, we can use a formulation based upon the (unnormalized) brightness histogram, h(a) = 
*p(a), with discrete brightness values a. This gives:  

 

The average brightness, ma, is an estimate of the mean brightness, ua, of the underlying brightness 

probability distribution.  
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Standard deviation 

The unbiased estimate  of the standard deviation, sa, of the brightness within a region ( ) with 
pixels is called the sample standard deviation  and is given by:  

 

Using the histogram formulation gives:  

The standard deviation, sa, is an estimate of a of the underlying brightness probability distribution.  

Coefficient-of-variation  

The dimensionless coefficient -of -variation , CV, is defined as:  
 

Percentiles 

The percentile, p%, of an unquantized  brightness distribution is defined as that value of the 
brightness a such that:  P(a) = p%  
Or equivalently  

 

Three special cases are frequently used in digital image processing.  

* 0% the minimum value in the region  
* 50% the median value in the region  
* 100% the maximum value in the region  

All three of these values can be determined from Figure 6a.  

Mode 

The mode of the distribution is the most frequent brightness value. There is no guarantee that a 
mode exists or that it is unique. 
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Signal to Noise ratio 

The signal-to-noise ratio, SNR, can have several definitions. The noise is characterized by its 
standard deviation, sn. The characterization of the signal can differ. If the signal is known to lie 
between two boundaries, amin <= a <= amax, then the SNR is defined as:  

Bounded signal -  

If the signal is not bounded but has a statistical distribution then two other definitions are known:  

Stochastic signal - S & N inter -dependent  

S & N independent  

where ma and sa are defined above.  

The various statistics are given in Table 5 for the image and the region shown in Figure 7.  

 

Figure 7 Table 5 Region is the interior of the circle. Statistics from Figure 7 

A SNR calculation for the entire image based on eq. is not directly available. The variations in the 
image brightness that lead to the large value of s (=49.5) are not, in general, due to noise but to the 
variation in local information. With the help of the region there is a way to estimate the SNR. We can 

use the s  (=4.0) and the dynamic range, amax - amin, for the image (=241-56) to calculate a global 
SNR (=33.3 dB). The underlying assumptions are that 1) the signal is approximately constant in that 
region and the variation in the region is therefore due to noise, and, 2) that the noise is the same over 

the entire image with a standard deviation given by sn = s .  
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Contour Representations 

When dealing with a region or object, several compact representations is available that can facilitate 
manipulation of and measurements on the object. In each case we assume that we begin with an 
image representation of the object as shown in Figure 8a,b. Several techniques exist to represent the 
region or object by describing its contour.  

Chain code 

This representation is based upon the work of Freeman. We follow the contour in a clockwise manner 
and keep track of the directions as we go from one contour pixel to the next. For the standard 
implementation of the chain code we consider a contour pixel to be an object pixel that has a 
background (non-object) pixel as one or more of its 4-connected neighbors. See Figures 3a and 8c.  
 
The codes associated with eight possible directions are the chain codes and, with x as the current 
contour pixel position, the codes are generally defined as:  

 

 

Figure 8 : Region (shaded) as it is transformed from (a) continuous to (b) discrete form and then 
considered as a (c) contour or (d) run lengths illustrated in alternating colors.  

Chain code properties 

* Even codes {0,2,4,6} correspond to horizontal and vertical directions; odd codes {1,3,5,7} correspond 
to the diagonal directions.  

* Each code can be considered as the angular direction, in multiples of 45deg. , that we must move to 

go from one contour pixel to the next.  
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* The absolute coordinates [m,n] of the first contour pixel (e.g. top, leftmost) together with the chain 
code of the contour represent a complete description of the discrete region contour.  

* When there is a change between two consecutive chain codes, then the contour has changed 
direction. This point is defined as a corner.  

Crack code 

An alternative to the chain code for contour encoding is to use neither the contour pixels associated 
with the object nor the contour pixels associated with background but rather the line, the "crack", in 
between. This is illustrated with an enlargement of a portion of Figure 8 in Figure 9.  

The "crack" code can be viewed as a chain code with four possible directions instead of eight.  

 

 
(a) (b) 

Figure 9 : (a) Object including part to be studied. (b) Contour pixels as used in the chain code are 
diagonally shaded. The "crack" is shown with the thick black line.  

The chain code for the enlarged section of Figure 9b, from top to bottom, is {5,6,7,7,0}. The crack code 
is {3,2,3,3,0,3,0,0}.  

Run codes 

A third representation is based on coding the consecutive pixels along a row--a run--that belong to an 
object by giving the starting position of the run and the ending position of the run. Such runs are 
illustrated in Figure 8d. There are a number of alternatives for the precise definition of the positions. 
Which alternative should be used depends upon the application and thus will not be discussed here. 
 


