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1 Introduction

Figure 1 illustrates a somewhat idealized tomographic imaging system. In
this case a subject is illuminated with a uniform X-ray source. The X-rays
are oriented at angle θ to the horizontal and the attenuated signal is picked
up by a linear array of sensors. Ideally, there are infinitely many sensors and
the image is acquired at an infinite number of angles, so that we are able to
recover a two dimensional, spatially continuous intensity data set, I (θ, s),
where θ ranges from 0 to π and s ranges from 0 to S. Here, S depends on
the physical size of the object which is being imaged.
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Figure 1: Idealized tomographic imaging.
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1.1 The Radon Transform

X-rays are attenuated as they travel through the body, in accordance with
the absorbtion characteristics (attenuation) of the different tissues and bone
matter which are encountered. Of course, this is also an idealized model,
since we ignore the effects of scattering. The idea of computed tomography
is to compute the attenuation map, a (x, y), of the subject’s interior. In the
idealized model we have

I (θ, s) = I0 exp

ÃI
Lθ,s

ln a (x, y)

!
where I0 is the strength of the received signal in the absence of any attenua-
tion, and

H
Lθ,s

denotes the line integral along the line at angle θ and position
s. Taking the logarithm of both sides, we obtain

ln I (θ, s) = ln I0 −
I
Lθ,s

d (x, y)

where d (x, y) = − log a (x, y) denotes the density at location (x, y) inside
the subject.

Finally, writing

r (θ, s) = ln I0 − ln I (θ, s) = ln I0
I (θ, s)

for the reduction in log-intensity due to X-rate attenuation, we obtain

r (θ, s) =

I
Lθ,s

d (x, y)

=

Z ∞

−∞
d (t cos θ + s sin θ,−t sin θ + s cos θ)dt (1)

This expansion of the line integral may be understood with the aid of Fig-
ure 2.Equation (1) is known as the Radon transform of d (x, y) and inversion
of the Radon transform is the objective of computed tomography. The co-
ordinate transform expressed in equation (1) may be identified with the
rotation matrix,

Rθ =

µ
cos θ sin θ
− sin θ cos θ

¶
(2)

where µ
x
y

¶
= Rθ

µ
t
s

¶
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Figure 2: Coordinate system for the Radon transform

1.2 Other Applications

In the development above, we have considered only an idealized X-ray CT
imaging system. However, there are a number of other important imag-
ing applications whose outputs are related (directly or indirectly) to line
integrals of some parameter field at various angles and positions. Exam-
ples include Positron Emission Tomography (PET) and Magnetic Resonance
Imaging (MRI).

In MRI, the subject is exposed to a high intensity magnetic field, with
a superimposed gradient field. In this way, the magnetic field is constant
along lines running perpendicular to the field gradient. When the subject is
exposed to RF radiation, protons absorb some of the RF energy in the form
of an altered (flipped) magnetic moment. When the RF source is switched
off, the protons relax (spin-lattice relaxation), emitting RF energy whose
frequency is directly related to the magnetic field to which they are exposed
through

ω (s) = γB (s)

where B (s) is the magnetic field strength at position s along the magnetic
field gradient and γ is the gyro-magnetic ratio for the material being imaged
(usually hydrogen bound in water molecules). ω (s) is called the Lamour
frequency and it is a function of the position s along the magnetic field
gradient.

In this way, the energy detected at frequency ω (s) corresponds to the line
integral of the density of water molecules along the line running perpendic-
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ular to the magnetic field gradient, at position s. Equivalently, the received
signal may be understood as the Fourier transform, along the s-direction, of
the Radon transform, r (θ, s), of the water molecule density, d (x, y), where
θ is the orientation of the magnetic gradient field. The gradient orientation
can be rotated electronically by mixing contributions from two separate gra-
dient fields, one in the X-direction and one in the Y -direction.

2 Projection Slice Theorem

It is helpful to express the Radon transform relationship in the frequency do-
main. In particular, let r̂ (θ,ω) denote the one dimensional Fourier transform
in the s-direction of r (θ, s) and let d̂ (ωx,ωy) denote the two dimensional
Fourier transform of d (x, y). Then

r̂ (θ,ω) =

Z ∞

−∞
e−jωsr (θ, s) ds

=

Z ∞

−∞

Z ∞

−∞
e−jωsd (t cos θ + s sin θ,−t sin θ + s cos θ) · ds · dt

Now making the coordinate substitution,µ
x
y

¶
= Rθ

µ
s
t

¶
with Rθ as in equation (2), we have

dx · dy = det (Rθ)dx · dy = dx · dy

and µ
s
t

¶
= R−1θ

µ
x
y

¶
=

µ
cos θ − sin θ
sin θ cos θ

¶µ
x
y

¶
so that

s = x cos θ − y sin θ

and

r̂ (θ,ω) =

Z ∞

−∞

Z ∞

−∞
e−jω(x cos θ−y sin θ)d (x, y) · dx · dy

= d̂ (ωx,ωy)
¯̄̄
ωx=ω cos θ,ωy=−ω sin θ
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Figure 3: Illustration of the projection slice relationship between the Radon
and Fourier transforms of a two dimensional signal, showing several different
orientations, θi.

This result is known as the “projection slice theorem.” It states that
the one dimensional Fourier transform of the Radon transform, r̂ (θ,ω), is
nothing other than the two dimensional Fourier transform of the density
function, d̂ (ωx,ωy), transformed to polar coordinates. The relationship is
illustated in Figure 3.

The projection slice theorem suggests an immediate approach to invert-
ing the Radon transform. First form r̂ (θ,ω). Then interpolate between
the available orientations, θ, in the Fourier domain to estimate d̂ (x, y) and
take the inverse Fourier transform to recover d (x, y). This approach is even
more attractive when used with MRI, since the output of the MRI system
is already in the Fourier domain, i.e., r̂ (θ,ω). In fact, many MRI devices
are able to implement the polar to rectangular coordinate transformation
through the imaging electronics themselves (this is the so-called “Fourier
geometry imaging mode”), so that the density field can be recovered sim-
ply by inverse Fourier transform of the collected data. Of course, there are
many phenomena which have not been accommodated in our simple imag-
ing model, including inhomogeneities in the magnetic field. A significant
problem in MRI imaging is that of correctly recovering the Fourier phase
characteristic.
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3 Algebraic Reconstruction Techniques

We may view each measurement sample, r (θ, s), as a single constraint on
the density field, d (x, y), where the constraint is that d (x, y) must satisfy

r (θ, s) =

Z ∞

−∞
d (t cos θ + s sin θ,−t sin θ + s cos θ)dt

In this way, the constraint defines a linear sub-space of the space of all
possible two dimensional images, d (x, y). Let Dθ,s denote this sub-space.
The image, d (x, y), must lie in the intersection of all of these sub-spaces,
which we may write as

d (x, y) ∈
\
θ,s

Dθ,s

Now observe that a linear sub-space is also a convex set, since linear combi-
nations of any two elements in a linear space also belongs to the space (by
definition). Thus, we may consider finding d (x, y) by the method of pro-
jections onto convex sets (POCS), as studied in the topic entitled “Inverse
Problems,” and also summarized for your convenience in Appendix A.

To run the POCS algorithm, we have only to find the projection of
a given image, d(k) (x, y), onto the sub-space, Dθ,s. We then iteratively
project any starting image onto each of the Dθ,s in turn until the algorithm
converges (guaranteed) at which point we have an image which satisfies all
of the constraints. The algorithm can only be meaningfully implemented
when the points, (x, y), lie on a discrete grid. Each observed sample may
then be written as a finite linear combination,

r (θ, s) =
X
n

d [n]w (|n1∆x sin θ + n2∆y cos θ − s|) (3)

Here, |n1∆x sin θ + n2∆y cos θ − s| is the Euclidean distance between the
line at location s and orientation θ and the point (x, y) = (n1∆x, n2∆y).
The one dimensional function, w (), is a kind of blurring function (a Line
Spread Function or LSF) identifying the sensitivity of the sensor at position
s to the the density field, d (x, y), at varying distances from the line.

Note that equation (3) may be rewritten as an inner product,

r (θ, s) =
X
n

d [n]wθ,s [n] = hd,wθ,si
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where

wθ,s [n] = w (|n1∆x sin θ + n2∆y cos θ − s|)

The projection of an initial image, d(k) [n], onto Dθ,s, may now be written
as

d(k+1) [n] = d(k) [n] + αwθ,s [n]

where

α =
r (θ, s)− d(k),wθ,s

®
kwθ,sk2

=
r (θ, s)−Pk d [k]wθ,s [k]P

kw
2
θ,s [k]

It is easy to verify that this selection yields

d(k+1),wθ,s

®
= r (θ, s).

The POCS approach described here is also known as an Algebraic Re-
construction Technique (ART). It is essentially a general iterative algorithm
for solving a large set of linear equations with sparse coefficients.

Comparing with equation (5), it is easy to see how the POCS approach
may be augmented to handle quantization errors in the r (θ, s) field or to add
additional constraints to the problem. For example, it is easy to constrain
the density field d (x, y) to be strictly non-negative,

d (x, y) ≥ 0

or to have a known region of support (location of the subject in the imaging
system), as part of the iterative POCS algorithm. For more on this, see
Section ??.
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A Review of POCS

In this Appendix we review a useful approach to solving inverse problems
in which the observations form hard constraints on the image we are trying
to recover. We assume that noise in our image observations can take on any
value in side the range

|ν[n]| ≤ σν , ∀n (4)

and we look for an ideal image, y[n], which satisfies the observation model

x [n] =
X
k

y [k]hn [k] + v [n]

Here, x [n] denotes the individual observations (usually samples recovered
from an imperfect image sensor), v [n] represents noise in these observations,
and hn [k] represents the relationship (assumed linear) between the ideal
image at location k and observation x [n]. In many cases, hn [k] represents
LSI filtering so that hn [k] = h [n− k].

In view of the simple noise model in equation (4), we look for images
which satisfy the constraints

¯̄̄̄
¯x[n]−X

k

y[k]hn [k]

¯̄̄̄
¯ ≤ σν , ∀n (5)

Each observed sample, x[n], induces a separate constraint equation. If our
model is correct, there should be at least one image, y[n], which satisifes all
the constraints simultaneously. Of course, in many situations there will be
many images which satisfy all the constraints and so we will often impose
additional constraints to narrow the space of possible solutions.

A.1 Underlying Principle

In this section we present the underlying principle behind the method of
iterated projections onto convex sets, usually simply called “POCS”. We
begin by reviewing the concept of a convex set. Let Y be any set; in our
case, it will denote the set of all images which satisfy some constraint. Let
y1,y2 ∈ Y denote any two elements of this set; in our case, these are two
different images which both satisfy the relevant constraint. The set Y is
called convex if y = ty1 + (1 − t)y2 ∈ Y for all 0 ≤ t ≤ 1, whenever
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y1,y2 ∈ Y. That is, all images formed by mixing the two images, y1 and y2
in any proportion must also satisfy the relevant constraint.

Let us consider the observation constraints of equation (5). In this case,
each observed sample, x[n], generates a constraint set, Y[n]. That is

y ∈ Y[n]⇐⇒
¯̄̄̄
¯x[n]−X

k

y[k]hn [k]

¯̄̄̄
¯ ≤ σν (6)

Let y1 and y2 be any two images which belong to Y[n] and let y be any
image on the convex interpolation of y1 and y2; that is, y[k] = ty1[k]+ (1−
t)y2[k], ∀k, with 0 ≤ t ≤ 1. Then it is easy to see that y ∈ Y also. For¯̄̄̄

¯x[n]−X
k

[ty1[k] + (1− t)y2[k]]hn [k]
¯̄̄̄
¯

=

¯̄̄̄
¯t
(
x[n]−

X
k

y1[k]hn [k]

)
+ (1− t)

(
x[n]−

X
k

y2[k]hn [k]

)¯̄̄̄
¯

≤ t

¯̄̄̄
¯x[n]−X

k

y1[k]hn [k]

¯̄̄̄
¯+ (1− t)

¯̄̄̄
¯x[n]−X

k

y2[k]hn [k]

¯̄̄̄
¯

≤ tσν + (1− t)σν = σν

where we have used the triangle inequality. Thus Y[n] is a convex set. The
image we seek, y, lies in the intersection of all these convex constraint sets.

POCS is a general method for finding an element in the intersection of
a collection of convex sets. Let Y1,Y2, . . . ,YK be an enumeration of all the
convex sets. In our case K would be the number of observed image samples.
Let y(0) be any initial image, not necessarily satisfying any of the constraint
sets. The algorithm iteratively refines this initial image, setting

y(k) = P(Yk,y(k−1)) (7)

That is, the next estimate, y(k), is obtained by projecting the most recent
estimate, y(k−1), onto the convex set, Yk. Once we have finished project-
ing onto all the convex sets, Yk, k = 1, 2, . . . ,K, we start all over again,
repeatedly projecting onto each of the convex sets in turn. This process is
guaranteed to converge. That is, we will eventually reach a point at which
the image lies in

Y =
\
k

Yk
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provided this intersection is non-empty.
The projection operation expressed in equation (7) means that y(k) is

the closest element of Yk to y(k−1). That is,

y(k) = P(Yk,y(k−1)) = argmin
y∈Yk

°°°y− y(k−1)°°°
Often, we will measure distance using the familiar Euclidean metric. In
general, however, any valid distance metric may be used provided the same
metric is used to perform the projection onto EVERY convex set. Of course,
the projection operation has no effect on elements which already belong to
the relevant set. Thus, each projection operator is idempotent.

A.2 Typical Constraint Sets

A.2.1 “Quantized” Observations

In this section we consider constraints which arise from the observation
model in the manner identified in equation (6). As mentioned already, this
type of constraint can be an appropriate model for a set of quantized ob-
servations. For notational simplicity, we rewrite this constraint in inner
product form as

y ∈ Y⇐⇒ |x [n]− hy,hni | ≤ σν

We have already seen that this set is convex. Now, write

y(1) = P(Y,y(0))

for the projection of an initial vector, y(0), onto the set, Y. Then

y(1) = y(0) + δ

where δ is the smallest displacement such that y(1) ∈ Y. We will work with
the conventional Euclidean norm,

kδk =
sX

k

δ2 [k]

In this case, we must have

δ = αhn
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for some real number, α. This is because vectors of this form produce the
largest change in |x [n]− hy,hni|, per unit length. So we want to find the
smallest value of α such that

σν ≥
¯̄̄
x [n]−

³D
y(0),hn

E
+ α hhn,hni

´¯̄̄
=

¯̄̄³
x [n]−

D
y(0),hn

E´
− α khnk2

¯̄̄
The solution to this depends upon whether x [n]− y(0),hn® is less than

−σν , greater than σν , or in between these two bounds. In particular, we
have

α =


(x[n]−hy(0),hni)−σν

khnk2 if x [n]− y(0),hn®> σν ,
(x[n]−hy(0),hni)+σν

khnk2 if (x [n]− y(0),hn®)< −σν ,
0 otherwise.

(8)

Thus, the procedure for projecting an initial image y(0) onto the constraint
set Y[n] is as follows:

Step 1: Compute the error,

² = x[n]−
X
k

y(0)[k]hn [k]

Step 2: Compute the value of khnk2 =
P
k h

2
n [k], noting that this might

be different for each value of n.

Step 3: Compute the value of α from

α =


²−σν
khnk2 if ² > σν ,
²+σν
khnk2 if ² < −σν ,
0 otherwise.

Step 4: Set y(1)[k] = y(0)[k] + αhn [k].

In a practical application, khnk2 usually takes on one of a small number
of different values, which can be computed ahead of time so that most of
the computational effort for any given projection is due to the computation
of ².

When the constraint sets are all as above and the “noise” amplitude,
σν = 0, the method of iterated projections onto convex sets is identical
to the so-called “algebraic reconstruction” method for solving large sets of
linear equations.
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A.2.2 Band-limited Constraint

As mentioned earlier, it is sometimes necessary to add additional constraints
on the class of images which can be reconstructed, beyond the constraints
offered by the observation model. This frequently happens when there are
too few observations so that the intersection of the observation constraint
sets is too large. After all, the POCS algorithm is only guaranteed to find
a single member of the intersection of the constraint sets and this is not
guaranteed to be a meaningful image if the constraints are very sloppy.
One common additional constraint is that of band-limitedness. That is, we
might assume that the ideal image, y[n], has the property that its Fourier
transform, ŷ(ω), is zero outside some region, Rŷ ⊂ (−π,π)2. It is easy to see
that the corresponding constraint set is convex. Moreover, the projection
operator is easy to deduce. Specifically, let y(0)[n] be the initial image and let
y(1)[n] be its projection onto the set of band-limited images. Then writing

y(1)[n] = y(0)[n]− δ[n]

we have

ŷ(1)(ω) = ŷ(0)(ω)− δ̂(ω) = 0, for ω /∈ Rŷ.
Thus,

δ̂(ω) = ŷ(0)(ω), for ω /∈ Rŷ. (9)

Now we want to find the smallest displacement image, δ[n], which satisfies
equation (9), where size is measured with respect to the Euclidean distance
metric, since this is the one we used to perform the projections associated
with the observation constraint sets in Section ?? and we must use the same
distance metric for all constraint sets in the POCS method. So

kδk2 =
X
n

δ2[n] =
1

4π2

Z π

−π
dω1 ·

Z π

−π
dω2 ·

¯̄̄
δ̂(ω)

¯̄̄2
by Parseval’s theorem, which means that the smallest displacement image
satisfying equation (9) has δ̂(ω) = 0, ∀ω ∈ Rŷ. Thus,

ŷ(1)(ω) =

(
ŷ(0)(ω) for ω ∈ Rŷ,
0 otherwise.

To summarize, to project an image onto the convex set of band-limited
functions one has only to take the Fourier transform (DSFT), set all terms
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outside the relevant region of support, Rŷ, to zero, and then take the inverse
Fourier transform. In practice, one generally performs this with the DFT
using the fast FFT algorithm.

It should be noted that unlike the observation constraints, imposing a
constraint such as band-limitedness on the image we are reconstructing may
represent an inaccurate assumption concerning the actual image which gen-
erated the observations. Consequently there is no longer any guarantee that
all the constraints can simultaneously be satisfied, that is, the intersection
of all the constraint sets might be empty. When this happens, the POCS
iterations will not converge. It is possible to detect lack of convergence
during the POCS procedure and optionally modify one or more of the con-
straints to enlarge the corresponding constraint set. For example, we might
gradually enlarge a circularly symmetric or rectangular band-limited region
of support, Rŷ, until convergence is achieved, thereby recovering the most
band-limited image which is consistent with all of the observations.

A.2.3 Spatial Region of Support Constraint

Suppose we know that y [n] = 0 outside some region of support, Ry. This
constraint is similar to the bandlimited constraint, except that it applies
in the image domain, rather than the Fourier domain. Accordingly, the
projection operator involves setting

y(1)[n] =

½
y(0)[n] if n ∈ Ry
0 otherwise

A.2.4 Boundedness Constraint

Suppose we know that y [n] must be strictly bounded according to

L ≤ y [n] ≤ U, ∀n

It is easy to see that the corresponding constraint set is convex. Again, the
projection operator is easy to deduce. Letting y(0)[n] be the initial image
and y(1)[n] its projection onto the set of bounded images, we can write the
projection operator as

y(1)[n] =


U if y(0)[n] ≥ U
L if y(0)[n] ≤ L

y(0)[n] otherwise


