
 

      
Abstract-- The quad-HIDAC PET scanner offers unparalleled 

high resolution PET imaging capability (<1 mm), combined with 
notable count rate performance (400 kcps) and sensitivity (up to 
2% with scatter correction). To some extent the image resolution 
realized by the system is determined by the choice of image 
reconstruction algorithm. This work compares 4 reconstruction 
techniques applied to data from the quad-HIDAC scanner: 2 
iterative methods (ROPLE and 3D OSEM) and 2 analytic 
methods (BPF and 3D RP). These four methods were chosen so 
as to include both a list-mode based and a projection-based 
method in each category. The algorithms were compared in 
terms of contrast, noise and resolution for a specially designed 
cylindrical phantom. The results indicate that the iterative 
methods offer improved resolution and contrast for a given noise 
level compared to the analytic methods. Of these iterative 
methods, the new list-mode technique (ROPLE) performed 
better than the projection-based technique.  
 

I. INTRODUCTION 

MALL animal imaging opens new possibilities for 
biomedical research, offering the ability to assess new 

targeted treatments whilst still in early development and 
allowing animal models of human disease to be analyzed. 
This research has called for higher resolution Positron 
Emission Tomography (PET) scanners, which in turn demand 
image reconstruction techniques which are able to make full 
use of the available scanner resolution. For the quad-HIDAC 
scanner [1], which has approximately 1012 lines of response 
(LORs), any use of projection data in the reconstruction may 
compromise the system's spatial sampling capability (storage 
of all possible projection elements is not only unfeasible, but 
also yields an exorbitant reconstruction time). To assess the 
significance of this, two projection data techniques: 3D 
Reprojection (3DRP) [2] and 3D Ordered Subsets 
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Expectation-Maximization (OSEM) [3], have been compared 
with two list-mode techniques: Backproject then Filter (BPF) 
[4] and the new Regularized One-Pass List-mode EM 
(ROPLE) algorithm [5], an enhanced version of the Fast 
Accurate Iterative Reconstruction (FAIR) algorithm [6]. 
Apart from storage requirements, choice of reconstruction 
algorithm is also influenced by the processing time. Iterative 
methods by definition tend to require more time, while 
analytic methods are in general quicker for the same size 
array. 
 

II. THEORY 

A. Projection Data Methods (3D RP & 3D OSEM) 
The 3D RP has often been regarded as the gold standard 

analytic reconstruction algorithm for 3D PET. Initially, the 
completely measured projections are processed with 2D 
Filtered Backprojection (FBP), to produce a low-statistics 
first estimate of the image. This volume is then forward-
projected to fill in the missing projections.  

3D OSEM is an iterative approach, based on Expectation 
Maximization-Maximum Likelihood (EM-ML) and using 
azimuthal subsets of the projection data to accelerate 
convergence. If the probability of an emission from voxel j 
being detected along line of response (LOR) i is aij, using 
measured data m, for a given subset Si, the update equation 
for the value n at update k is: 

              lk
i

i

Si
ijI

Si
ij

lk
jlk

j q
ma

a

n
n

i

i

,

,
1, ∑

∑ ∈

∈

+ =  (1) 

where 

∑
=

=
J

j

k
jij

k
i naq

1

            (2) 

is the expected count in LOR i if the intensity was n. 
 
 
 

 

Quad-HIDAC PET: Comparison of Four Image 
Reconstruction Techniques for High Resolution 

Imaging 
Richard J. Walledge, Roido Manavaki, Andrew J. Reader, Alan P. Jeavons,                      

Peter J. Julyan, Sha Zhao, David L. Hastings and Jamal Zweit 

S 



 

B. List-mode Methods (BPF & ROPLE) 
The backproject then filter method attempts to obtain the 

image f(r) by using a backprojected image g(r) and the point 
response function h(r) of the system. The filtering step is a 
frequency domain multiplication. Taking Fourier transforms: 
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The ROPLE algorithm is based on the pure form of the list-

mode EM-ML algorithm, given by: 

∑
∑ =

=

+ =
M

i
k
i

ijI

i
ij

k
jk

j q
a

a

n
n

1

1

1 1
      (4) 

where the measured list-mode data are now implicitly 1 for 
each acquired LOR. The algorithm can be extended to 
incorporate subsets: 
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where only a subset s of the M total LORs is used in each 
update. Each subset s (s=1…S) consists of an equal number of 
list-mode events. It is well known that this algorithm, just as 
with the normal projection data based EM-ML, can lead to 
noisy reconstructions. In this work, the median root prior[7] 
was used to regularize the reconstruction. In addition, both 
OSEM and ROPLE incorporated resolution recovery via a 
spatially extensive system model[5]. 
 

III. METHODS 

A. Line Source 
A 0.5 mm diameter aluminum wire (length ~100 mm) was 

irradiated with 22Na, giving about 1 MBq of activity. This line 
source was placed along the axis of a 16-module quad-
HIDAC and scanned for 20 minutes, acquiring 10.8 million 
events. Four different reconstruction techniques were applied 
to the data, using an array 64×64×512, and voxels of 0.2 mm. 
For the projection-based methods, 60 φ samples (3º interval) 
were used, with 31 θ samples (3º interval). For 3D RP and 
BPF, different cut-off frequencies in the range 0.5 to 1.0 were 
used for frequency domain windowing. For OSEM and 
ROPLE, the median root prior was used for regularization, 
with varying strengths in the range 0.1 to 0.9. Profiles were 
taken through the line in the radial and tangential directions, 
and these were interpolated to 10 times their original length. 
The full-width half max (FWHM) and full-width tenth max 
(FWTM) were taken along each line profile, and these values 
were averaged over the axial length of the source. 

B. Cylindrical Phantom 
A cylindrical phantom (30 mm internal diameter, 50 mm 

internal length) containing 4 cylindrical inserts (10 mm 

diameter, 20 mm length) was filled with FDG of activity 2.13, 
0.94, 0.39 and 0.29 MBq, and a background of 0.12 MBq. 
This phantom was scanned with the quad-HIDAC for one 
hour. 106 million list-mode events were acquired, and the 
four reconstruction techniques were applied to the data. For 
the projection-based methods, a set of projections was used 
with 128×128 bins (0.5 mm sampling in both y´ and z´ 
directions), 96 φ samples (1.9º interval) and 27 θ samples 
(3.5º interval). All reconstructions used 0.5 mm voxels in a 
1283 image array. 

The following figures of merit (FOMs) were evaluated for 
the reconstructed phantom images: contrast, noise and axial 
uniformity. Contrast was measured by taking a region from 
within each of the four inserts, and then expressing the 
contrast for cylinder i as 
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Noise was measured using the standard deviation of voxel 
values in the inserts (expressed as a fraction of the mean for 
that insert). This gave a contrast measure for 3 different 
activity levels, and noise measure for 4 activity levels. 

C. Rat Bone Scan 
A 500g rat was injected with 17 MBq of F- activity, and 

scanned with the quad-HIDAC, with 145 million list-mode 
events being acquired in 30 minutes. The four algorithms 
were used to reconstruct the data into a 128×128×512 array, 
with 0.5 mm voxels. 3DRP and OSEM used parallel 
projections with 96 φ samples (1.9º interval) and 25 θ 
samples (4º interval). The reconstructions were compared 
visually.  

IV. EXPERIMENTAL RESULTS 

Figure 1 shows the reconstruction times for a number of 
image sizes, using a typical Pentium III class workstation 
(700MHz, 768 MB RAM). 
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 Fig. 1. Comparison of reconstruction time in minutes for the four 
algorithms, for two data set sizes (106 million and 3 million events). Two 
image sizes (1283 and 2563 voxels) are shown. The times for OSEM and 3D 
RP do not include rebinning into projections. The times for OSEM and 
ROPLE are for one iteration of 50 subsets. 

  



 

 
Fig. 2. Visual comparison of reconstructions of an 18F rat scan. Shown is a pair of maximum intensity coronal projections for (left to right) BPF, 3DRP, 

OSEM and ROPLE Each image is from an array of 128×128×512 voxels (size 0.5 mm). In all cases, detail in the spine and vertibrae is visible, and with the 
iterative methods there is a clear difference in background noise compared to the analytic methods. The scan was with 17 MBq of activity, and consisted of 
145 million events acquired in 30 minutes. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 

Slices from images of the rat bone scan are shown in Figure 
2. 

Figure 3 shows the range of the FWHM resolution of the 
reconstructed line source, coupled with the noise values for 
the hottest cylinder. 

Figure 4 shows the range of the FWTM resolution of the 
reconstructed line source, coupled with the noise values for 
the coldest cylinder. 

Figure 5 shows the contrast for the four algorithms. 
 

Resolution-Noise

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

FWHM (mm)

N
oi

se
 (S

D
/m

ea
n)

 (H
ot

 c
yl

in
de

r)

BPF

ROPLE

3DRP

OSEM

 
Fig. 3. Tradeoff curves for the resolution (FWHM) against noise for the 

four algorithms. Noise is measured as the SD of voxel values in the hottest 
cylindrical insert (2.13 MBq), over the mean value. For 3D RP and BPF, 
different cut-off frequencies were used for frequency domain windowing. 
For OSEM and ROPLE, different values for the strength of the median root 
prior were used. 
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 Fig. 4. Tradeoff curves for the resolution (FWTM) against noise for the 
four algorithms. Noise is measured as the SD of voxel values in the coldest 
cylindrical insert (0.29 MBq), over the mean value. For 3D RP and BPF, 
different cut-off frequencies were used for frequency domain windowing. 
For OSEM and ROPLE, different values for the strength of the median root 
prior were used. 
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Fig. 5.  Contrast values for the four algorithms. The three groups 

represent the second, third and forth inserts. Contrast was calculated as the 
mean count in a cylinder of interest as a ratio of the mean of the hottest 
cylinder, then this ratio was expressed as a fraction of the known true values. 
The main bars represent the actual contrast values, with the error-bars 
representing the maxima and minima (obtained by using different 
reconstruction parameters) 

V.  DISCUSSION 

A. Processing Times 
For high-statistics imaging, the list-mode based methods 

suffer an increase in processing time due to a larger number 
of events. Conversely, this also means that in low-statistics 
situations such as dynamic scans, they operate more quickly 
than the projection-based methods. However, list-mode 
methods have the property that increasing the matrix size by a 
factor of 23 does not lead to a factor of 8 increase in the 
reconstruction time. As memory limitations become less of an 
issue and so matrix sizes increase, this gain becomes more 
important. 

B. Resolution- Noise Tradeoff 
In terms of FWHM resolution, there is a marked difference 

between the iterative and analytic approaches. As can be seen 
in Figure 3, the two analytic methods, BPF and 3D RP, offer 
comparable resolution, although 3D RP has wider range of 
values at both ends of the resolution scale. OSEM has 
superior resolution values compared to the analytic methods, 
while ROPLE consistently achieves the highest resolution of 
all (β = 0.5 gives a mean FWHM value of 0.73 mm). 
However, these two methods also suffer a higher noise level 
compared to 3D RP. With a Colsher filter, the noise values 
for the hottest insert with 3DRP are quite consistent and are 
the lowest of all the algorithms tested here. It is only with a 
ramp filter that the values rise considerably. 

Trends for the FWTM resolution are similar to those for 
FWHM, with the exception that there are some crossovers 
between the curves. Although ROPLE was still the best, the 
difference in resolution was not so clear-cut. 3DRP suffered 



 

slightly more than the other algorithms for FWTM, although 
its noise properties were still the best. 

C. Contrast  
The contrast results for all methods were comparable, 

showing only minor differences. 3DRP and OSEM were the 
highest for the high activity level (0.94 MBq). The fact that 
some of the final values are above 100% can be explained 
either by the target cylinder being over-represented, or by the 
hottest cylinder being under-represented. 

ROPLE offered slightly better performance for the low 
activity levels (0.39 and 0.29 MBq), whereas BPF was 
generally slightly inferior to all the other methods. The 
contrast difference between the list-mode and the projection-
based methods was not readily observable: in some cases the 
two projection-based methods appear inside the range for the 
two list-mode techniques. For three of the four techniques 
considered here, varying the smoothing and regularization 
had virtually no significant effect on the contrast levels. 

 

VI. CONCLUSION 
Iterative image reconstruction offers improved resolution 

and contrast at a given noise level when compared to analytic 
methods. Based on the FOMs studied in this work, ROPLE is 
the best all-round reconstruction algorithm for use with quad-
HIDAC data. 

Only one disadvantage of this technique was apparent: that 
of the long processing times required. Acceleration would be 
possible by reducing the number of redundant calculations 
that are performed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Further work for this study will be to incorporate full data 
correction techniques into these algorithms, to allow for 
effects such as scatter, and random events. 

There is also the possibility of testing these algorithms for 
dynamic PET imaging with the quad-HIDAC, where the high 
sensitivity of this scanner will allow for a data acquisition to 
be broken down into data sets of shorter duration. 
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